281 lines
6.6 KiB
C
281 lines
6.6 KiB
C
|
/* @(#) Does a inverse fft on an input image descriptor
|
||
|
* @(#) using the function fft_sp.
|
||
|
* @(#) Input complex (2 floats) output complex (2 floats)
|
||
|
* @(#)
|
||
|
* @(#) Usage:
|
||
|
* @(#) int im_invfft(in, out)
|
||
|
* @(#) IMAGE *in, *out;
|
||
|
* @(#)
|
||
|
*
|
||
|
* Copyright: 1990, N. Dessipris.
|
||
|
*
|
||
|
* Author: Nicos Dessipris
|
||
|
* Written on: 12/04/1990
|
||
|
* Modified on :
|
||
|
* 28/6/95 JC
|
||
|
* - rewritten, based on new im_fwfft() code
|
||
|
* 10/9/98 JC
|
||
|
* - frees memory more quickly
|
||
|
* 2/4/02 JC
|
||
|
* - fftw code added
|
||
|
* 13/7/02 JC
|
||
|
* - Type reset
|
||
|
* 27/2/03 JC
|
||
|
* - tiny speed-up ... save 1 copy on write
|
||
|
* 22/1/04 JC
|
||
|
* - oops, fix for segv on wider than high fftw transforms
|
||
|
* 3/11/04
|
||
|
* - added fftw3 support
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
|
||
|
This file is part of VIPS.
|
||
|
|
||
|
VIPS is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
|
||
|
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
|
||
|
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include <config.h>
|
||
|
#endif /*HAVE_CONFIG_H*/
|
||
|
#include <vips/intl.h>
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
#ifdef HAVE_FFTW
|
||
|
#include <fftw.h>
|
||
|
#endif /*HAVE_FFTW*/
|
||
|
|
||
|
#ifdef HAVE_FFTW3
|
||
|
#include <fftw3.h>
|
||
|
#endif /*HAVE_FFTW3*/
|
||
|
|
||
|
#include <vips/vips.h>
|
||
|
#include <vips/internal.h>
|
||
|
|
||
|
#ifdef WITH_DMALLOC
|
||
|
#include <dmalloc.h>
|
||
|
#endif /*WITH_DMALLOC*/
|
||
|
|
||
|
#ifdef HAVE_FFTW
|
||
|
/* Call fftw for a 1 band image.
|
||
|
*/
|
||
|
static int
|
||
|
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
|
||
|
{
|
||
|
fftwnd_plan plan;
|
||
|
|
||
|
IMAGE *cmplx = im_open_local( out, "invfft1:1", "t" );
|
||
|
|
||
|
/* Make dp complex image.
|
||
|
*/
|
||
|
if( !cmplx || im_pincheck( in ) || im_poutcheck( out ) )
|
||
|
return( -1 );
|
||
|
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
|
||
|
im_error( "im_invfft", _( "one band uncoded only" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
if( im_clip2dcm( in, cmplx ) )
|
||
|
return( -1 );
|
||
|
|
||
|
/* Make the plan for the transform. Yes, they really do use nx for
|
||
|
* height and ny for width.
|
||
|
*/
|
||
|
if( !(plan = fftw2d_create_plan( in->Ysize, in->Xsize,
|
||
|
FFTW_BACKWARD,
|
||
|
FFTW_MEASURE | FFTW_USE_WISDOM | FFTW_IN_PLACE )) ) {
|
||
|
im_error( "im_invfft", _( "unable to create transform plan" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
|
||
|
fftwnd_one( plan, (fftw_complex *) cmplx->data, NULL );
|
||
|
|
||
|
fftwnd_destroy_plan( plan );
|
||
|
|
||
|
/* Copy to out.
|
||
|
*/
|
||
|
if( im_copy( cmplx, out ) )
|
||
|
return( -1 );
|
||
|
|
||
|
return( 0 );
|
||
|
}
|
||
|
#else /*!HAVE_FFTW*/
|
||
|
#ifdef HAVE_FFTW3
|
||
|
/* Complex to complex inverse transform.
|
||
|
*/
|
||
|
static int
|
||
|
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
|
||
|
{
|
||
|
fftw_plan plan;
|
||
|
|
||
|
IMAGE *cmplx = im_open_local( out, "invfft1:1", "t" );
|
||
|
|
||
|
/* We have to have a separate buffer for the planner to work on.
|
||
|
*/
|
||
|
double *planner_scratch = IM_ARRAY( dummy,
|
||
|
in->Xsize * in->Ysize * 2, double );
|
||
|
|
||
|
/* Make dp complex image.
|
||
|
*/
|
||
|
if( !cmplx || im_pincheck( in ) || im_poutcheck( out ) )
|
||
|
return( -1 );
|
||
|
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
|
||
|
im_error( "im_invfft", _( "one band uncoded only" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
if( im_clip2dcm( in, cmplx ) )
|
||
|
return( -1 );
|
||
|
|
||
|
/* Make the plan for the transform. Yes, they really do use nx for
|
||
|
* height and ny for width.
|
||
|
*/
|
||
|
if( !(plan = fftw_plan_dft_2d( in->Ysize, in->Xsize,
|
||
|
(fftw_complex *) planner_scratch,
|
||
|
(fftw_complex *) planner_scratch,
|
||
|
FFTW_BACKWARD,
|
||
|
0 )) ) {
|
||
|
im_error( "im_invfft", _( "unable to create transform plan" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
|
||
|
fftw_execute_dft( plan,
|
||
|
(fftw_complex *) cmplx->data, (fftw_complex *) cmplx->data );
|
||
|
|
||
|
fftw_destroy_plan( plan );
|
||
|
|
||
|
/* Copy to out.
|
||
|
*/
|
||
|
if( im_copy( cmplx, out ) )
|
||
|
return( -1 );
|
||
|
|
||
|
return( 0 );
|
||
|
}
|
||
|
#else /*!HAVE_FFTW3*/
|
||
|
/* Fall back to VIPS's built-in fft
|
||
|
*/
|
||
|
static int
|
||
|
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
|
||
|
{
|
||
|
int bpx = im_ispoweroftwo( in->Xsize );
|
||
|
int bpy = im_ispoweroftwo( in->Ysize );
|
||
|
float *buf, *q, *p1, *p2;
|
||
|
int x, y;
|
||
|
|
||
|
/* Buffers for real and imaginary parts.
|
||
|
*/
|
||
|
IMAGE *real = im_open_local( dummy, "invfft1:1", "t" );
|
||
|
IMAGE *imag = im_open_local( dummy, "invfft1:2", "t" );
|
||
|
|
||
|
/* Temps.
|
||
|
*/
|
||
|
IMAGE *t1 = im_open_local( dummy, "invfft1:3", "p" );
|
||
|
IMAGE *t2 = im_open_local( dummy, "invfft1:4", "p" );
|
||
|
|
||
|
if( !real || !imag || !t1 )
|
||
|
return( -1 );
|
||
|
if( im_pincheck( in ) || im_outcheck( out ) )
|
||
|
return( -1 );
|
||
|
if( in->Coding != IM_CODING_NONE ||
|
||
|
in->Bands != 1 || !im_iscomplex( in ) ) {
|
||
|
im_error( "im_invfft", _( "one band complex uncoded only" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
if( !bpx || !bpy ) {
|
||
|
im_error( "im_invfft", _( "sides must be power of 2" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
|
||
|
/* Make sure we have a single-precision complex input image.
|
||
|
*/
|
||
|
if( im_clip2cm( in, t1 ) )
|
||
|
return( -1 );
|
||
|
|
||
|
/* Extract real and imag parts. We have to complement the imaginary.
|
||
|
*/
|
||
|
if( im_c2real( t1, real ) )
|
||
|
return( -1 );
|
||
|
if( im_c2imag( t1, t2 ) || im_lintra( -1.0, t2, 0.0, imag ) )
|
||
|
return( -1 );
|
||
|
|
||
|
/* Transform!
|
||
|
*/
|
||
|
if( im__fft_sp( (float *) real->data, (float *) imag->data,
|
||
|
bpx - 1, bpy - 1 ) ) {
|
||
|
im_error( "im_invfft", _( "fft_sp failed" ) );
|
||
|
return( -1 );
|
||
|
}
|
||
|
|
||
|
/* WIO to out.
|
||
|
*/
|
||
|
if( im_cp_desc( out, in ) )
|
||
|
return( -1 );
|
||
|
out->Bbits = IM_BBITS_COMPLEX;
|
||
|
out->BandFmt = IM_BANDFMT_COMPLEX;
|
||
|
if( im_setupout( out ) )
|
||
|
return( -1 );
|
||
|
if( !(buf = (float *) IM_ARRAY( dummy,
|
||
|
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
|
||
|
return( -1 );
|
||
|
|
||
|
/* Gather together real and imag parts.
|
||
|
*/
|
||
|
for( p1 = (float *) real->data, p2 = (float *) imag->data,
|
||
|
y = 0; y < out->Ysize; y++ ) {
|
||
|
q = buf;
|
||
|
|
||
|
for( x = 0; x < out->Xsize; x++ ) {
|
||
|
q[0] = *p1++;
|
||
|
q[1] = *p2++;
|
||
|
q += 2;
|
||
|
}
|
||
|
|
||
|
if( im_writeline( y, out, (PEL *) buf ) )
|
||
|
return( -1 );
|
||
|
}
|
||
|
|
||
|
return( 0 );
|
||
|
}
|
||
|
#endif /*HAVE_FFTW3*/
|
||
|
#endif /*HAVE_FFTW*/
|
||
|
|
||
|
int
|
||
|
im_invfft( IMAGE *in, IMAGE *out )
|
||
|
{
|
||
|
IMAGE *dummy = im_open( "im_invfft:1", "p" );
|
||
|
|
||
|
if( !dummy )
|
||
|
return( -1 );
|
||
|
if( im__fftproc( dummy, in, out, invfft1 ) ) {
|
||
|
im_close( dummy );
|
||
|
return( -1 );
|
||
|
}
|
||
|
im_close( dummy );
|
||
|
|
||
|
if( out->Bands == 1 )
|
||
|
out->Type = IM_TYPE_B_W;
|
||
|
else
|
||
|
out->Type = IM_TYPE_MULTIBAND;
|
||
|
|
||
|
return( 0 );
|
||
|
}
|