Comments for lbb resampler
This commit is contained in:
parent
7f8938ae6c
commit
06f61bcf58
@ -1,4 +1,4 @@
|
|||||||
/* locally bounded bicubic resampler
|
/* lbb (locally bounded bicubic) resampler
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -29,13 +29,70 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* 2009-2010 (c) Nicolas Robidoux, John Cupitt, Chantal Racette.
|
* 2010 (c) Nicolas Robidoux, John Cupitt, Chantal Racette.
|
||||||
*
|
*
|
||||||
* Nicolas Robidoux thanks Ralf Meyer, Minglun Gong, Adam Turcotte,
|
* Nicolas Robidoux thanks Ralf Meyer, Minglun Gong, Adam Turcotte,
|
||||||
* Eric Daoust, Øyvind Kolås, Geert Jordaens, and Sven Neumann for
|
* Eric Daoust, Øyvind Kolås, Geert Jordaens, and Sven Neumann for
|
||||||
* useful comments and code.
|
* useful comments and code.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* LBB (Locally Bounded Bicubic) is a high quality nonlinear variant
|
||||||
|
* of Catmull-Rom. Compared to Catmull-Rom, it produces resampled
|
||||||
|
* images with halos much reduced, both in terms of physical extent
|
||||||
|
* and over/undershoot amplitude. This is accomplished without
|
||||||
|
* noticeable changes to image smoothness.
|
||||||
|
*
|
||||||
|
* Another important property is that the resampled values are
|
||||||
|
* contained within the range of nearby input values.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* LBB is a novel method with the following properties:
|
||||||
|
*
|
||||||
|
* --When the limiters are inactive, it gives the same results as
|
||||||
|
* Catmull-Rom.
|
||||||
|
*
|
||||||
|
* --When used on binary images, in which case the limiters clamp
|
||||||
|
* everything to zero, LBB gives the same results as bicubic Hermite
|
||||||
|
* with all derivatives at the input pixel locations set to zero.
|
||||||
|
*
|
||||||
|
* --It is interpolatory.
|
||||||
|
*
|
||||||
|
* --It is C^1 with continuous cross derivatives.
|
||||||
|
*
|
||||||
|
* --It is locally bounded, in the following sense: Over each square
|
||||||
|
* patch, the surface is contained between the minimum and the
|
||||||
|
* maximum values among the 16 nearest input pixel values (those in
|
||||||
|
* the stencil).
|
||||||
|
*
|
||||||
|
* --It is globally bounded between the very smallest input pixel
|
||||||
|
* value and the very largest input pixel value. Consequently, it is
|
||||||
|
* not necessary to clamp results.
|
||||||
|
*
|
||||||
|
* --It is a Hermite bicubic method: The bicubic surface is defined,
|
||||||
|
* one convex hull of four nearby input points at a time, using the
|
||||||
|
* four point values, four x-derivatives, four y-derivatives, and four
|
||||||
|
* cross-derivatives.
|
||||||
|
*
|
||||||
|
* --The stencil for values in a square patch is the usual 4x4.
|
||||||
|
*
|
||||||
|
* --The LBB method is based on the method of Ken Brodlie, Petros
|
||||||
|
* Mashwama and Sohail Butt for constraining Hermite interpolants
|
||||||
|
* between globally defined planes:
|
||||||
|
*
|
||||||
|
* Visualization of surface data to preserve positivity and other
|
||||||
|
* simple constraints, Computer & Graphics, Vol. 19, #4, pages
|
||||||
|
* 585-594, 1995. DOI: 10.1016/0097-8493(95)00036-C.
|
||||||
|
*
|
||||||
|
* The main novelty of the LBB method (besides its reliance on slope
|
||||||
|
* limiters for image resampling) lies in the fact that the method
|
||||||
|
* of Brodlie et al is used to enforce local, as opposed to global,
|
||||||
|
* boundedness. This method was developed by Nicolas Robidoux and
|
||||||
|
* Chantal Racette of the Department of Mathematics and Computer
|
||||||
|
* Science of Laurentian University.
|
||||||
|
*/
|
||||||
|
|
||||||
#ifdef HAVE_CONFIG_H
|
#ifdef HAVE_CONFIG_H
|
||||||
#include <config.h>
|
#include <config.h>
|
||||||
#endif /*HAVE_CONFIG_H*/
|
#endif /*HAVE_CONFIG_H*/
|
||||||
@ -112,8 +169,8 @@ lbbicubic( const double c00,
|
|||||||
/*
|
/*
|
||||||
* STENCIL (FOOTPRINT) OF INPUT VALUES:
|
* STENCIL (FOOTPRINT) OF INPUT VALUES:
|
||||||
*
|
*
|
||||||
* The stencil of Symmetrized Monotone Catmull-Rom is the same as
|
* The stencil of LBB is the same as for any standard Hermite
|
||||||
* the standard Catmull-Rom's:
|
* bicubic (e.g., Catmull-Rom):
|
||||||
*
|
*
|
||||||
* (ix-1,iy-1) (ix,iy-1) (ix+1,iy-1) (ix+2,iy-1)
|
* (ix-1,iy-1) (ix,iy-1) (ix+1,iy-1) (ix+2,iy-1)
|
||||||
* = uno_one = uno_two = uno_thr = uno_fou
|
* = uno_one = uno_two = uno_thr = uno_fou
|
||||||
@ -444,9 +501,8 @@ lbbicubic( const double c00,
|
|||||||
/*
|
/*
|
||||||
* Call lbb with a type conversion operator as a parameter.
|
* Call lbb with a type conversion operator as a parameter.
|
||||||
*
|
*
|
||||||
* It would be nice to do this with templates somehow---for one thing
|
* It would be nice to do this with templates but we can't figure out
|
||||||
* this would allow code comments!---but we can't figure a clean way
|
* how to do it cleanly. Suggestions welcome!
|
||||||
* to do it.
|
|
||||||
*/
|
*/
|
||||||
#define LBB_CONVERSION( conversion ) \
|
#define LBB_CONVERSION( conversion ) \
|
||||||
template <typename T> static void inline \
|
template <typename T> static void inline \
|
||||||
|
Loading…
Reference in New Issue
Block a user