started im_aconv()
started hacking non-separable version of im_aconvsep()
This commit is contained in:
parent
7b6bc4267b
commit
0aa9f81c30
43
TODO
43
TODO
@ -1,4 +1,3 @@
|
||||
|
||||
- revisit orc conv
|
||||
|
||||
use an 8.8 accumulator ... build the scale into the 8.8 coeffs ... no div at
|
||||
@ -8,22 +7,56 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
- also VipsFormat ... could this replace vips_image_new_from_string()? or
|
||||
could we call this from vips_image_new_from_string()?
|
||||
|
||||
at the moment, VipsFormat subclasses never get made, we just use the classes
|
||||
... we'd need to start making real vipsformat objects for this to work
|
||||
|
||||
how much effort would this be to change?
|
||||
how would this work?
|
||||
|
||||
at the moment we have
|
||||
|
||||
image = vips_image_new_from_file( filename );
|
||||
|
||||
build a VipsImage with filename "r"
|
||||
|
||||
we also have the new CLI thing
|
||||
|
||||
obj = vips_object_new_from_string( class, str );
|
||||
|
||||
calls class->new_from_string( first-component(str) ), then sets
|
||||
optional args from rest-of-str(str), then does _build()
|
||||
|
||||
image-class->new_from_string() just make a vipsimage "r" str
|
||||
|
||||
the _build() uses VipsFormat() to load via im_tiff2vips() or whatever
|
||||
|
||||
so ... we could change vips_image_new_from_file() to be
|
||||
|
||||
VIPS_IMAGE( vips_object_new_from_string( VipsImageClass, str ) )
|
||||
|
||||
we could also make VipsImage::new_from_string() make a real VipsFormat
|
||||
object, then load options could be set from the str
|
||||
|
||||
how does save work? we call image-class->output_to_arg(obj, str), which in
|
||||
turn calls vips_image_write(), which in turn uses VipsFormat
|
||||
|
||||
|
||||
|
||||
|
||||
- make something for Python as well
|
||||
|
||||
use ctypes and not swig so we get an easy Win version
|
||||
|
||||
wrap new API for C++
|
||||
- make a vips8 binding for Python as well
|
||||
|
||||
use ctypes and not swig so we get an easy Win version
|
||||
|
||||
wrap new API for C++
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
917
libvips/convolution/im_aconv.c
Normal file
917
libvips/convolution/im_aconv.c
Normal file
@ -0,0 +1,917 @@
|
||||
/* im_aconv ... approximate convolution
|
||||
*
|
||||
* This operation does an approximate convolution.
|
||||
*
|
||||
* Author: John Cupitt & Nicolas Robidoux
|
||||
* Written on: 31/5/11
|
||||
* Modified on:
|
||||
* 31/5/11
|
||||
* - from im_aconvsep()
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
This file is part of VIPS.
|
||||
|
||||
VIPS is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
See:
|
||||
|
||||
http://incubator.quasimondo.com/processing/stackblur.pde
|
||||
|
||||
This thing is a little like stackblur, but generalised to any separable
|
||||
mask.
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
TODO
|
||||
|
||||
- block average masks by 2, 3, 4 .... before calling boxes_new(),
|
||||
then boxes_new() just makes 1 line high lines, not boxes
|
||||
|
||||
- use the downsample factor to set box height for the vertical
|
||||
component
|
||||
|
||||
- are we handling mask offset correctly?
|
||||
|
||||
*/
|
||||
|
||||
/* Show sample pixels as they are transformed.
|
||||
#define DEBUG_PIXELS
|
||||
*/
|
||||
|
||||
/*
|
||||
#define DEBUG
|
||||
#define VIPS_DEBUG
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include <config.h>
|
||||
#endif /*HAVE_CONFIG_H*/
|
||||
#include <vips/intl.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <vips/vips.h>
|
||||
#include <vips/vector.h>
|
||||
#include <vips/debug.h>
|
||||
|
||||
#ifdef WITH_DMALLOC
|
||||
#include <dmalloc.h>
|
||||
#endif /*WITH_DMALLOC*/
|
||||
|
||||
/* Maximum number of boxes we can break the mask into.
|
||||
*/
|
||||
#define MAX_LINES (1000)
|
||||
|
||||
/* Euclid's algorithm. Use this to common up mults.
|
||||
*/
|
||||
static int
|
||||
gcd( int a, int b )
|
||||
{
|
||||
if( b == 0 )
|
||||
return( abs( a ) );
|
||||
else
|
||||
return( gcd( b, a % b ) );
|
||||
}
|
||||
|
||||
/* A set of lines.
|
||||
*/
|
||||
typedef struct _Lines {
|
||||
struct _Boxes *boxes;
|
||||
|
||||
int n_lines;
|
||||
|
||||
/* Start is the left-most pixel in the line, end is one beyond the
|
||||
* right-most pixel.
|
||||
*/
|
||||
int start[MAX_LINES];
|
||||
int end[MAX_LINES];
|
||||
|
||||
/* Integer scale factor for each line.
|
||||
*/
|
||||
int factor[MAX_LINES];
|
||||
|
||||
/* Band to read/write the sum from.
|
||||
*/
|
||||
int band[MAX_LINES];
|
||||
} Lines;
|
||||
|
||||
/* A set of boxes. Each box is formed from a pair of lines.
|
||||
*/
|
||||
typedef struct _Boxes {
|
||||
/* Copy of our arguments.
|
||||
*/
|
||||
IMAGE *in;
|
||||
IMAGE *out;
|
||||
DOUBLEMASK *mask;
|
||||
int n_layers;
|
||||
|
||||
int area;
|
||||
int rounding;
|
||||
|
||||
Lines hlines;
|
||||
Lines vlines;
|
||||
} Boxes;
|
||||
|
||||
static void
|
||||
line_start( Lines *lines, int x, int factor, int band )
|
||||
{
|
||||
lines->start[lines->n_lines] = x;
|
||||
lines->factor[lines->n_lines] = factor;
|
||||
lines->band[lines->n_lines] = band;
|
||||
}
|
||||
|
||||
static int
|
||||
line_end( Lines *lines, int x )
|
||||
{
|
||||
lines->end[lines->n_lines] = x;
|
||||
|
||||
if( lines->n_lines >= MAX_LINES - 1 ) {
|
||||
vips_error( "im_aconv", "%s", _( "mask too complex" ) );
|
||||
return( -1 );
|
||||
}
|
||||
lines->n_lines += 1;
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
/* Break a mask into boxes.
|
||||
*/
|
||||
static Boxes *
|
||||
boxes_new( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
|
||||
{
|
||||
const int size = mask->xsize * mask->ysize;
|
||||
|
||||
Boxes *boxes;
|
||||
double max;
|
||||
double min;
|
||||
double depth;
|
||||
double sum;
|
||||
int layers_above;
|
||||
int layers_below;
|
||||
int band_offset;
|
||||
int z, n, x;
|
||||
|
||||
/* Check parameters.
|
||||
*/
|
||||
if( im_piocheck( in, out ) ||
|
||||
im_check_uncoded( "im_aconv", in ) ||
|
||||
vips_check_dmask_1d( "im_aconv", mask ) )
|
||||
return( NULL );
|
||||
|
||||
if( !(boxes = VIPS_NEW( out, Boxes )) )
|
||||
return( NULL );
|
||||
boxes->in = in;
|
||||
boxes->out = out;
|
||||
if( !(boxes->mask = (DOUBLEMASK *) im_local( out,
|
||||
(im_construct_fn) im_dup_dmask,
|
||||
(im_callback_fn) im_free_dmask, mask, mask->filename, NULL )) )
|
||||
return( NULL );
|
||||
boxes->n_layers = n_layers;
|
||||
|
||||
boxes->hlines.boxes = boxes;
|
||||
boxes->hlines.n_lines = 0;
|
||||
boxes->vlines.boxes = boxes;
|
||||
boxes->vlines.n_lines = 0;
|
||||
|
||||
VIPS_DEBUG_MSG( "boxes_new: breaking into %d layers ...\n", n_layers );
|
||||
|
||||
/* Find mask range. We must always include the zero axis in the mask.
|
||||
*/
|
||||
max = 0;
|
||||
min = 0;
|
||||
for( n = 0; n < size; n++ ) {
|
||||
if( mask->coeff[n] > max )
|
||||
max = mask->coeff[n];
|
||||
if( mask->coeff[n] < min )
|
||||
min = mask->coeff[n];
|
||||
}
|
||||
|
||||
/* The zero axis must fall on a layer boundary. Estimate the
|
||||
* depth, find n-lines-above-zero, get exact depth, then calculate a
|
||||
* fixed n-lines which includes any negative parts.
|
||||
*/
|
||||
depth = (max - min) / n_layers;
|
||||
layers_above = ceil( max / depth );
|
||||
depth = max / layers_above;
|
||||
layers_below = floor( min / depth );
|
||||
n_layers = layers_above - layers_below;
|
||||
|
||||
VIPS_DEBUG_MSG( "depth = %g, n_layers = %d\n", depth, n_layers );
|
||||
|
||||
/* For each layer, generate a set of lines which are inside the
|
||||
* perimeter. Work down from the top.
|
||||
*/
|
||||
band_offset = 0;
|
||||
for( z = 0; z < n_layers; z++ ) {
|
||||
/* How deep we are into the mask, as a double we can test
|
||||
* against. Add half the layer depth so we can easily find >50%
|
||||
* mask elements.
|
||||
*/
|
||||
double z_ph = max - (1 + z) * depth + depth / 2;
|
||||
|
||||
/* Odd, but we must avoid rounding errors that make us miss 0
|
||||
* in the line above.
|
||||
*/
|
||||
int z_positive = z < layers_above;
|
||||
|
||||
for( y = 0; y < mask->ysize; y++ ) {
|
||||
int inside;
|
||||
|
||||
/* Start outside the perimeter.
|
||||
*/
|
||||
inside = 0;
|
||||
|
||||
for( x = 0; x < mask->xsize; x++ ) {
|
||||
double coeff = mask->coeff[x + y * mask->xsize];
|
||||
|
||||
/* The vertical line from mask[x, y] to 0 is
|
||||
* inside. Is our current square (x, y) part
|
||||
* of that line?
|
||||
*/
|
||||
if( (y_positive && coeff >= y_ph) ||
|
||||
(!y_positive && coeff <= y_ph) ) {
|
||||
if( !inside ) {
|
||||
line_start( lines, x,
|
||||
y_positive ? 1 : -1 );
|
||||
inside = 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if( inside ) {
|
||||
line_end( lines, x );
|
||||
inside = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( inside &&
|
||||
line_end( lines, width ) )
|
||||
return( NULL );
|
||||
}
|
||||
}
|
||||
|
||||
/* Can we common up any lines? Search for lines with identical
|
||||
* start/end.
|
||||
*/
|
||||
for( z = 0; z < lines->n_lines; z++ ) {
|
||||
for( n = z + 1; n < lines->n_lines; n++ ) {
|
||||
if( lines->start[z] == lines->start[n] &&
|
||||
lines->end[z] == lines->end[n] ) {
|
||||
lines->factor[z] += lines->factor[n];
|
||||
|
||||
/* n can be deleted. Do this in a separate
|
||||
* pass below.
|
||||
*/
|
||||
lines->factor[n] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now we can remove all factor 0 lines.
|
||||
*/
|
||||
for( z = 0; z < lines->n_lines; z++ ) {
|
||||
if( lines->factor[z] == 0 ) {
|
||||
for( x = z; x < lines->n_lines; x++ ) {
|
||||
lines->start[x] = lines->start[x + 1];
|
||||
lines->end[x] = lines->end[x + 1];
|
||||
lines->factor[x] = lines->factor[x + 1];
|
||||
}
|
||||
lines->n_lines -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Find the area of the lines.
|
||||
*/
|
||||
lines->area = 0;
|
||||
for( z = 0; z < lines->n_lines; z++ )
|
||||
lines->area += lines->factor[z] *
|
||||
(lines->end[z] - lines->start[z]);
|
||||
|
||||
/* Strength reduction: if all lines are divisible by n, we can move
|
||||
* that n out into the ->area factor. The aim is to produce as many
|
||||
* factor 1 lines as we can and to reduce the chance of overflow.
|
||||
*/
|
||||
x = lines->factor[0];
|
||||
for( z = 1; z < lines->n_lines; z++ )
|
||||
x = gcd( x, lines->factor[z] );
|
||||
for( z = 0; z < lines->n_lines; z++ )
|
||||
lines->factor[z] /= x;
|
||||
lines->area *= x;
|
||||
|
||||
/* Find the area of the original mask.
|
||||
*/
|
||||
sum = 0;
|
||||
for( z = 0; z < width; z++ )
|
||||
sum += mask->coeff[z];
|
||||
|
||||
lines->area = rint( sum * lines->area / mask->scale );
|
||||
lines->rounding = (lines->area + 1) / 2 + mask->offset * lines->area;
|
||||
|
||||
/* ASCII-art layer drawing.
|
||||
printf( "lines:\n" );
|
||||
for( z = 0; z < lines->n_lines; z++ ) {
|
||||
printf( "%3d - %2d x ", z, lines->factor[z] );
|
||||
for( x = 0; x < 55; x++ ) {
|
||||
int rx = x * (width + 1) / 55;
|
||||
|
||||
if( rx >= lines->start[z] && rx < lines->end[z] )
|
||||
printf( "#" );
|
||||
else
|
||||
printf( " " );
|
||||
}
|
||||
printf( " %3d .. %3d\n", lines->start[z], lines->end[z] );
|
||||
}
|
||||
printf( "area = %d\n", lines->area );
|
||||
printf( "rounding = %d\n", lines->rounding );
|
||||
*/
|
||||
|
||||
return( lines );
|
||||
}
|
||||
|
||||
/* Our sequence value.
|
||||
*/
|
||||
typedef struct {
|
||||
Lines *lines;
|
||||
REGION *ir; /* Input region */
|
||||
|
||||
int *start; /* Offsets for start and stop */
|
||||
int *end;
|
||||
|
||||
/* The sums for each line. int for integer types, double for floating
|
||||
* point types.
|
||||
*/
|
||||
void *sum;
|
||||
|
||||
int last_stride; /* Avoid recalcing offsets, if we can */
|
||||
} LinesSequence;
|
||||
|
||||
/* Free a sequence value.
|
||||
*/
|
||||
static int
|
||||
lines_stop( void *vseq, void *a, void *b )
|
||||
{
|
||||
LinesSequence *seq = (LinesSequence *) vseq;
|
||||
|
||||
IM_FREEF( im_region_free, seq->ir );
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
/* Convolution start function.
|
||||
*/
|
||||
static void *
|
||||
lines_start( IMAGE *out, void *a, void *b )
|
||||
{
|
||||
IMAGE *in = (IMAGE *) a;
|
||||
Lines *lines = (Lines *) b;
|
||||
|
||||
LinesSequence *seq;
|
||||
|
||||
if( !(seq = IM_NEW( out, LinesSequence )) )
|
||||
return( NULL );
|
||||
|
||||
/* Init!
|
||||
*/
|
||||
seq->lines = lines;
|
||||
seq->ir = im_region_create( in );
|
||||
seq->start = IM_ARRAY( out, lines->n_lines, int );
|
||||
seq->end = IM_ARRAY( out, lines->n_lines, int );
|
||||
if( vips_band_format_isint( out->BandFmt ) )
|
||||
seq->sum = IM_ARRAY( out, lines->n_lines, int );
|
||||
else
|
||||
seq->sum = IM_ARRAY( out, lines->n_lines, double );
|
||||
seq->last_stride = -1;
|
||||
|
||||
if( !seq->ir || !seq->start || !seq->end || !seq->sum ) {
|
||||
lines_stop( seq, in, lines );
|
||||
return( NULL );
|
||||
}
|
||||
|
||||
return( seq );
|
||||
}
|
||||
|
||||
#define CLIP_UCHAR( V ) \
|
||||
G_STMT_START { \
|
||||
if( (V) < 0 ) \
|
||||
(V) = 0; \
|
||||
else if( (V) > UCHAR_MAX ) \
|
||||
(V) = UCHAR_MAX; \
|
||||
} G_STMT_END
|
||||
|
||||
#define CLIP_CHAR( V ) \
|
||||
G_STMT_START { \
|
||||
if( (V) < SCHAR_MIN ) \
|
||||
(V) = SCHAR_MIN; \
|
||||
else if( (V) > SCHAR_MAX ) \
|
||||
(V) = SCHAR_MAX; \
|
||||
} G_STMT_END
|
||||
|
||||
#define CLIP_USHORT( V ) \
|
||||
G_STMT_START { \
|
||||
if( (V) < 0 ) \
|
||||
(V) = 0; \
|
||||
else if( (V) > USHRT_MAX ) \
|
||||
(V) = USHRT_MAX; \
|
||||
} G_STMT_END
|
||||
|
||||
#define CLIP_SHORT( V ) \
|
||||
G_STMT_START { \
|
||||
if( (V) < SHRT_MIN ) \
|
||||
(V) = SHRT_MIN; \
|
||||
else if( (V) > SHRT_MAX ) \
|
||||
(V) = SHRT_MAX; \
|
||||
} G_STMT_END
|
||||
|
||||
#define CLIP_NONE( V ) {}
|
||||
|
||||
/* The h and v loops are very similar, but also annoyingly different. Keep
|
||||
* them separate for easy debugging.
|
||||
*/
|
||||
|
||||
#define HCONV_INT( TYPE, CLIP ) { \
|
||||
for( i = 0; i < bands; i++ ) { \
|
||||
int *seq_sum = (int *) seq->sum; \
|
||||
\
|
||||
TYPE *q; \
|
||||
TYPE *p; \
|
||||
int sum; \
|
||||
\
|
||||
p = i + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top + y ); \
|
||||
q = i + (TYPE *) IM_REGION_ADDR( or, r->left, r->top + y ); \
|
||||
\
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] = 0; \
|
||||
for( x = lines->start[z]; x < lines->end[z]; x++ ) \
|
||||
seq_sum[z] += p[x * istride]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
sum = (sum + lines->rounding) / lines->area; \
|
||||
CLIP( sum ); \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
\
|
||||
for( x = 1; x < r->width; x++ ) { \
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] += p[seq->end[z]]; \
|
||||
seq_sum[z] -= p[seq->start[z]]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
p += istride; \
|
||||
sum = (sum + lines->rounding) / lines->area; \
|
||||
CLIP( sum ); \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define HCONV_FLOAT( TYPE ) { \
|
||||
for( i = 0; i < bands; i++ ) { \
|
||||
double *seq_sum = (double *) seq->sum; \
|
||||
\
|
||||
TYPE *q; \
|
||||
TYPE *p; \
|
||||
double sum; \
|
||||
\
|
||||
p = i + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top + y ); \
|
||||
q = i + (TYPE *) IM_REGION_ADDR( or, r->left, r->top + y ); \
|
||||
\
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] = 0; \
|
||||
for( x = lines->start[z]; x < lines->end[z]; x++ ) \
|
||||
seq_sum[z] += p[x * istride]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
sum = sum / lines->area + mask->offset; \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
\
|
||||
for( x = 1; x < r->width; x++ ) { \
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] += p[seq->end[z]]; \
|
||||
seq_sum[z] -= p[seq->start[z]]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
p += istride; \
|
||||
sum = sum / lines->area + mask->offset; \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Do horizontal masks ... we scan the mask along scanlines.
|
||||
*/
|
||||
static int
|
||||
lines_generate_horizontal( REGION *or, void *vseq, void *a, void *b )
|
||||
{
|
||||
LinesSequence *seq = (LinesSequence *) vseq;
|
||||
IMAGE *in = (IMAGE *) a;
|
||||
Lines *lines = (Lines *) b;
|
||||
|
||||
REGION *ir = seq->ir;
|
||||
const int n_lines = lines->n_lines;
|
||||
DOUBLEMASK *mask = lines->mask;
|
||||
Rect *r = &or->valid;
|
||||
|
||||
/* Double the bands (notionally) for complex.
|
||||
*/
|
||||
int bands = vips_band_format_iscomplex( in->BandFmt ) ?
|
||||
2 * in->Bands : in->Bands;
|
||||
|
||||
Rect s;
|
||||
int x, y, z, i;
|
||||
int istride;
|
||||
int ostride;
|
||||
|
||||
/* Prepare the section of the input image we need. A little larger
|
||||
* than the section of the output image we are producing.
|
||||
*/
|
||||
s = *r;
|
||||
s.width += mask->xsize - 1;
|
||||
s.height += mask->ysize - 1;
|
||||
if( im_prepare( ir, &s ) )
|
||||
return( -1 );
|
||||
|
||||
/* Stride can be different for the vertical case, keep this here for
|
||||
* ease of direction change.
|
||||
*/
|
||||
istride = IM_IMAGE_SIZEOF_PEL( in ) /
|
||||
IM_IMAGE_SIZEOF_ELEMENT( in );
|
||||
ostride = IM_IMAGE_SIZEOF_PEL( lines->out ) /
|
||||
IM_IMAGE_SIZEOF_ELEMENT( lines->out );
|
||||
|
||||
/* Init offset array.
|
||||
*/
|
||||
if( seq->last_stride != istride ) {
|
||||
seq->last_stride = istride;
|
||||
|
||||
for( z = 0; z < n_lines; z++ ) {
|
||||
seq->start[z] = lines->start[z] * istride;
|
||||
seq->end[z] = lines->end[z] * istride;
|
||||
}
|
||||
}
|
||||
|
||||
for( y = 0; y < r->height; y++ ) {
|
||||
switch( in->BandFmt ) {
|
||||
case IM_BANDFMT_UCHAR:
|
||||
HCONV_INT( unsigned char, CLIP_UCHAR );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_CHAR:
|
||||
HCONV_INT( signed char, CLIP_UCHAR );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_USHORT:
|
||||
HCONV_INT( unsigned short, CLIP_USHORT );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_SHORT:
|
||||
HCONV_INT( signed short, CLIP_SHORT );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_UINT:
|
||||
HCONV_INT( unsigned int, CLIP_NONE );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_INT:
|
||||
HCONV_INT( signed int, CLIP_NONE );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_FLOAT:
|
||||
HCONV_FLOAT( float );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_DOUBLE:
|
||||
HCONV_FLOAT( double );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_COMPLEX:
|
||||
HCONV_FLOAT( float );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_DPCOMPLEX:
|
||||
HCONV_FLOAT( double );
|
||||
break;
|
||||
|
||||
default:
|
||||
g_assert( 0 );
|
||||
}
|
||||
}
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
#define VCONV_INT( TYPE, CLIP ) { \
|
||||
for( x = 0; x < sz; x++ ) { \
|
||||
int *seq_sum = (int *) seq->sum; \
|
||||
\
|
||||
TYPE *q; \
|
||||
TYPE *p; \
|
||||
int sum; \
|
||||
\
|
||||
p = x + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top ); \
|
||||
q = x + (TYPE *) IM_REGION_ADDR( or, r->left, r->top ); \
|
||||
\
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] = 0; \
|
||||
for( y = lines->start[z]; y < lines->end[z]; y++ ) \
|
||||
seq_sum[z] += p[y * istride]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
sum = (sum + lines->rounding) / lines->area; \
|
||||
CLIP( sum ); \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
\
|
||||
for( y = 1; y < r->height; y++ ) { \
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] += p[seq->end[z]]; \
|
||||
seq_sum[z] -= p[seq->start[z]]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
p += istride; \
|
||||
sum = (sum + lines->rounding) / lines->area; \
|
||||
CLIP( sum ); \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define VCONV_FLOAT( TYPE ) { \
|
||||
for( x = 0; x < sz; x++ ) { \
|
||||
double *seq_sum = (double *) seq->sum; \
|
||||
\
|
||||
TYPE *q; \
|
||||
TYPE *p; \
|
||||
double sum; \
|
||||
\
|
||||
p = x + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top ); \
|
||||
q = x + (TYPE *) IM_REGION_ADDR( or, r->left, r->top ); \
|
||||
\
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] = 0; \
|
||||
for( y = lines->start[z]; y < lines->end[z]; y++ ) \
|
||||
seq_sum[z] += p[y * istride]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
sum = sum / lines->area + mask->offset; \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
\
|
||||
for( y = 1; y < r->height; y++ ) { \
|
||||
sum = 0; \
|
||||
for( z = 0; z < lines->n_lines; z++ ) { \
|
||||
seq_sum[z] += p[seq->end[z]]; \
|
||||
seq_sum[z] -= p[seq->start[z]]; \
|
||||
sum += lines->factor[z] * seq_sum[z]; \
|
||||
} \
|
||||
p += istride; \
|
||||
sum = sum / lines->area + mask->offset; \
|
||||
*q = sum; \
|
||||
q += ostride; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Do vertical masks ... we scan the mask down columns of pixels. Copy-paste
|
||||
* from above with small changes.
|
||||
*/
|
||||
static int
|
||||
lines_generate_vertical( REGION *or, void *vseq, void *a, void *b )
|
||||
{
|
||||
LinesSequence *seq = (LinesSequence *) vseq;
|
||||
IMAGE *in = (IMAGE *) a;
|
||||
Lines *lines = (Lines *) b;
|
||||
|
||||
REGION *ir = seq->ir;
|
||||
const int n_lines = lines->n_lines;
|
||||
DOUBLEMASK *mask = lines->mask;
|
||||
Rect *r = &or->valid;
|
||||
|
||||
/* Double the width (notionally) for complex.
|
||||
*/
|
||||
int sz = vips_band_format_iscomplex( in->BandFmt ) ?
|
||||
2 * IM_REGION_N_ELEMENTS( or ) : IM_REGION_N_ELEMENTS( or );
|
||||
|
||||
Rect s;
|
||||
int x, y, z;
|
||||
int istride;
|
||||
int ostride;
|
||||
|
||||
/* Prepare the section of the input image we need. A little larger
|
||||
* than the section of the output image we are producing.
|
||||
*/
|
||||
s = *r;
|
||||
s.width += mask->xsize - 1;
|
||||
s.height += mask->ysize - 1;
|
||||
if( im_prepare( ir, &s ) )
|
||||
return( -1 );
|
||||
|
||||
/* Stride can be different for the vertical case, keep this here for
|
||||
* ease of direction change.
|
||||
*/
|
||||
istride = IM_REGION_LSKIP( ir ) /
|
||||
IM_IMAGE_SIZEOF_ELEMENT( lines->in );
|
||||
ostride = IM_REGION_LSKIP( or ) /
|
||||
IM_IMAGE_SIZEOF_ELEMENT( lines->out );
|
||||
|
||||
/* Init offset array.
|
||||
*/
|
||||
if( seq->last_stride != istride ) {
|
||||
seq->last_stride = istride;
|
||||
|
||||
for( z = 0; z < n_lines; z++ ) {
|
||||
seq->start[z] = lines->start[z] * istride;
|
||||
seq->end[z] = lines->end[z] * istride;
|
||||
}
|
||||
}
|
||||
|
||||
switch( in->BandFmt ) {
|
||||
case IM_BANDFMT_UCHAR:
|
||||
VCONV_INT( unsigned char, CLIP_UCHAR );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_CHAR:
|
||||
VCONV_INT( signed char, CLIP_UCHAR );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_USHORT:
|
||||
VCONV_INT( unsigned short, CLIP_USHORT );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_SHORT:
|
||||
VCONV_INT( signed short, CLIP_SHORT );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_UINT:
|
||||
VCONV_INT( unsigned int, CLIP_NONE );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_INT:
|
||||
VCONV_INT( signed int, CLIP_NONE );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_FLOAT:
|
||||
VCONV_FLOAT( float );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_DOUBLE:
|
||||
VCONV_FLOAT( double );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_COMPLEX:
|
||||
VCONV_FLOAT( float );
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_DPCOMPLEX:
|
||||
VCONV_FLOAT( double );
|
||||
break;
|
||||
|
||||
default:
|
||||
g_assert( 0 );
|
||||
}
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
static int
|
||||
aconv_raw( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
|
||||
{
|
||||
Lines *lines;
|
||||
im_generate_fn generate;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf( "aconv_raw: starting with matrix:\n" );
|
||||
im_print_dmask( mask );
|
||||
#endif /*DEBUG*/
|
||||
|
||||
if( !(lines = lines_new( in, out, mask, n_layers )) )
|
||||
return( -1 );
|
||||
|
||||
/* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output
|
||||
* would be 1x1.
|
||||
*/
|
||||
if( im_cp_desc( out, in ) )
|
||||
return( -1 );
|
||||
out->Xsize -= mask->xsize - 1;
|
||||
out->Ysize -= mask->ysize - 1;
|
||||
if( out->Xsize <= 0 || out->Ysize <= 0 ) {
|
||||
im_error( "im_aconv", "%s", _( "image too small for mask" ) );
|
||||
return( -1 );
|
||||
}
|
||||
|
||||
if( mask->xsize == 1 )
|
||||
generate = lines_generate_vertical;
|
||||
else
|
||||
generate = lines_generate_horizontal;
|
||||
|
||||
if( im_demand_hint( out, IM_SMALLTILE, in, NULL ) ||
|
||||
im_generate( out,
|
||||
lines_start, generate, lines_stop, in, lines ) )
|
||||
return( -1 );
|
||||
|
||||
out->Xoffset = -mask->xsize / 2;
|
||||
out->Yoffset = -mask->ysize / 2;
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
||||
/**
|
||||
* im_aconv:
|
||||
* @in: input image
|
||||
* @out: output image
|
||||
* @mask: convolution mask
|
||||
* @n_layers: number of layers for approximation
|
||||
*
|
||||
* Perform an approximate separable convolution of @in with @mask.
|
||||
*
|
||||
* The mask must be 1xn or nx1 elements.
|
||||
* The output image
|
||||
* always has the same #VipsBandFmt as the input image.
|
||||
*
|
||||
* The image is convolved twice: once with @mask and then again with @mask
|
||||
* rotated by 90 degrees.
|
||||
*
|
||||
* Larger values for @n_layers give more accurate
|
||||
* results, but are slower. As @n_layers approaches the mask radius, the
|
||||
* accuracy will become close to exact convolution and the speed will drop to
|
||||
* match. For many large masks, such as Gaussian, @n_layers need be only 10% of
|
||||
* this value and accuracy will still be good.
|
||||
*
|
||||
* See also: im_convsep_f(), im_create_dmaskv().
|
||||
*
|
||||
* Returns: 0 on success, -1 on error
|
||||
*/
|
||||
int
|
||||
im_aconv( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
|
||||
{
|
||||
IMAGE *t[2];
|
||||
const int n_mask = mask->xsize * mask->ysize;
|
||||
DOUBLEMASK *rmask;
|
||||
|
||||
if( im_open_local_array( out, t, 2, "im_aconv", "p" ) ||
|
||||
!(rmask = (DOUBLEMASK *) im_local( out,
|
||||
(im_construct_fn) im_dup_dmask,
|
||||
(im_callback_fn) im_free_dmask, mask, mask->filename, NULL )) )
|
||||
return( -1 );
|
||||
|
||||
rmask->xsize = mask->ysize;
|
||||
rmask->ysize = mask->xsize;
|
||||
|
||||
/*
|
||||
*/
|
||||
if( im_embed( in, t[0], 1, n_mask / 2, n_mask / 2,
|
||||
in->Xsize + n_mask - 1, in->Ysize + n_mask - 1 ) ||
|
||||
aconv_raw( t[0], t[1], mask, n_layers ) ||
|
||||
aconv_raw( t[1], out, rmask, n_layers ) )
|
||||
return( -1 );
|
||||
|
||||
/* For testing .. just try one direction.
|
||||
if( aconv_raw( in, out, mask, n_layers ) )
|
||||
return( -1 );
|
||||
*/
|
||||
|
||||
out->Xoffset = 0;
|
||||
out->Yoffset = 0;
|
||||
|
||||
return( 0 );
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user