stuff
This commit is contained in:
parent
62cea3b7ef
commit
641c7fa430
@ -21,7 +21,8 @@
|
||||
- add and use im_check_uncoded() and friends
|
||||
- matlab load handles column-major and plane-separated images (thanks Mikhail)
|
||||
- JPEG save allows "none" for profile, meaning don't attach a profile
|
||||
- saner, simpler, faster typecasting for im_add(), im_subtract()
|
||||
- saner, simpler, faster typecasting for im_add(), im_subtract(),
|
||||
im_multiply(), im_divide()
|
||||
- im_measure() allows sel == NULL, meaning all patches
|
||||
|
||||
25/3/09 started 7.18.0
|
||||
|
5
TODO
5
TODO
@ -1,4 +1,4 @@
|
||||
|
||||
- revising im_remainder()
|
||||
|
||||
|
||||
- 1-bit PNG read is broken?
|
||||
@ -11,9 +11,6 @@
|
||||
|
||||
|
||||
|
||||
- im_multiply() should do proper complex multiplication, since im_divide does
|
||||
|
||||
|
||||
- im__cast_and_call() no longer does
|
||||
|
||||
out->Bbits = im_bits_of_fmt( out->BandFmt );
|
||||
|
@ -1,13 +1,4 @@
|
||||
/* @(#) Divide two images
|
||||
* @(#) Images must have the same no of bands and can be of any type
|
||||
* @(#) No check for overflow is carried out.
|
||||
* @(#)
|
||||
* @(#) int
|
||||
* @(#) im_divide(in1, in2, out)
|
||||
* @(#) IMAGE *in1, *in2, *out;
|
||||
* @(#)
|
||||
* @(#) Returns 0 on success and -1 on error
|
||||
* @(#)
|
||||
/* im_divide.c
|
||||
*
|
||||
* Copyright: 1990, N. Dessipris.
|
||||
*
|
||||
@ -29,6 +20,9 @@
|
||||
* - updated for 1 band $op n band image -> n band image case
|
||||
* 8/12/06
|
||||
* - add liboil support
|
||||
* 18/8/08
|
||||
* - revise upcasting system
|
||||
* - add gtkdoc comments
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -83,57 +77,66 @@
|
||||
#ifdef USE_MODARG_DIV
|
||||
/* This is going to be much slower */
|
||||
|
||||
#define cloop(TYPE) \
|
||||
{ \
|
||||
TYPE *X= (TYPE*) in[0]; \
|
||||
TYPE *Y= (TYPE*) in[1]; \
|
||||
TYPE *Z= (TYPE*) out; \
|
||||
TYPE *Z_stop= Z + sz * 2; \
|
||||
\
|
||||
for( ; Z < Z_stop; X+= 2, Y+=2 ){ \
|
||||
double arg= atan2( X[1], X[0] ) - atan2( Y[1], Y[0] ); \
|
||||
double mod= hypot( X[1], X[0] ) / hypot( Y[1], Y[0] ); \
|
||||
*Z++= mod * cos( arg ); \
|
||||
*Z++= mod * sin( arg ); \
|
||||
} \
|
||||
#define CLOOP( TYPE ) { \
|
||||
TYPE *X = (TYPE *) in[0]; \
|
||||
TYPE *Y = (TYPE *) in[1]; \
|
||||
TYPE *Z = (TYPE *) out; \
|
||||
int i; \
|
||||
\
|
||||
for( i = 0; i < sz; i++ ) { \
|
||||
double arg = atan2( X[1], X[0] ) - atan2( Y[1], Y[0] ); \
|
||||
double mod = hypot( X[1], X[0] ) / hypot( Y[1], Y[0] ); \
|
||||
\
|
||||
Z[0] = mod * cos( arg ); \
|
||||
Z[1] = mod * sin( arg ); \
|
||||
\
|
||||
X += 2; \
|
||||
Y += 2; \
|
||||
Z += 2; \
|
||||
} \
|
||||
}
|
||||
|
||||
#else /* USE_MODARG_DIV */
|
||||
|
||||
#define cloop(TYPE) \
|
||||
{ \
|
||||
TYPE *X= (TYPE*) in[0]; \
|
||||
TYPE *Y= (TYPE*) in[1]; \
|
||||
TYPE *Z= (TYPE*) out; \
|
||||
TYPE *Z_stop= Z + sz * 2; \
|
||||
\
|
||||
for( ; Z < Z_stop; X+= 2, Y+=2 ) \
|
||||
if( fabs( Y[0] ) > fabs( Y[1] )){ \
|
||||
double a= Y[1] / Y[0]; \
|
||||
double b= Y[0] + Y[1] * a; \
|
||||
*Z++= ( X[0] + X[1] * a ) / b; \
|
||||
*Z++= ( X[1] - X[0] * a ) / b; \
|
||||
} \
|
||||
else { \
|
||||
double a= Y[0] / Y[1]; \
|
||||
double b= Y[1] + Y[0] * a; \
|
||||
*Z++= ( X[0] * a + X[1] ) / b; \
|
||||
*Z++= ( X[1] * a - X[0] ) / b; \
|
||||
} \
|
||||
#define CLOOP( TYPE ) { \
|
||||
TYPE *X = (TYPE *) in[0]; \
|
||||
TYPE *Y = (TYPE *) in[1]; \
|
||||
TYPE *Z = (TYPE *) out; \
|
||||
int i; \
|
||||
\
|
||||
for( i = 0; i < sz; i++ ) { \
|
||||
if( fabs( Y[0] ) > fabs( Y[1] ) ) { \
|
||||
double a = Y[1] / Y[0]; \
|
||||
double b = Y[0] + Y[1] * a; \
|
||||
\
|
||||
Z[0] = (X[0] + X[1] * a) / b; \
|
||||
Z[1] = (X[1] - X[0] * a) / b; \
|
||||
} \
|
||||
else { \
|
||||
double a = Y[0] / Y[1]; \
|
||||
double b = Y[1] + Y[0] * a; \
|
||||
\
|
||||
Z[0] = (X[0] * a + X[1]) / b; \
|
||||
Z[1] = (X[1] * a - X[0]) / b; \
|
||||
} \
|
||||
\
|
||||
X += 2; \
|
||||
Y += 2; \
|
||||
Z += 2; \
|
||||
} \
|
||||
}
|
||||
|
||||
#endif /* USE_MODARG_DIV */
|
||||
|
||||
/* Real divide.
|
||||
*/
|
||||
#define rloop(TYPE) \
|
||||
{\
|
||||
TYPE *p1 = (TYPE *) in[0];\
|
||||
TYPE *p2 = (TYPE *) in[1];\
|
||||
TYPE *q = (TYPE *) out;\
|
||||
#define RLOOP( IN, OUT ) { \
|
||||
IN *p1 = (IN *) in[0]; \
|
||||
IN *p2 = (IN *) in[1]; \
|
||||
OUT *q = (OUT *) out; \
|
||||
\
|
||||
for( x = 0; x < sz; x++ )\
|
||||
q[x] = p1[x] / p2[x];\
|
||||
for( x = 0; x < sz; x++ ) \
|
||||
q[x] = p1[x] / p2[x]; \
|
||||
}
|
||||
|
||||
static void
|
||||
@ -145,31 +148,126 @@ divide_buffer( PEL **in, PEL *out, int width, IMAGE *im )
|
||||
/* Divide all input types.
|
||||
*/
|
||||
switch( im->BandFmt ) {
|
||||
case IM_BANDFMT_CHAR: rloop( signed char ); break;
|
||||
case IM_BANDFMT_UCHAR: rloop( unsigned char ); break;
|
||||
case IM_BANDFMT_SHORT: rloop( signed short ); break;
|
||||
case IM_BANDFMT_USHORT: rloop( unsigned short ); break;
|
||||
case IM_BANDFMT_INT: rloop( signed int ); break;
|
||||
case IM_BANDFMT_UINT: rloop( unsigned int ); break;
|
||||
case IM_BANDFMT_CHAR: RLOOP( signed char, float ); break;
|
||||
case IM_BANDFMT_UCHAR: RLOOP( unsigned char, float ); break;
|
||||
case IM_BANDFMT_SHORT: RLOOP( signed short, float ); break;
|
||||
case IM_BANDFMT_USHORT: RLOOP( unsigned short, float ); break;
|
||||
case IM_BANDFMT_INT: RLOOP( signed int, float ); break;
|
||||
case IM_BANDFMT_UINT: RLOOP( unsigned int, float ); break;
|
||||
|
||||
case IM_BANDFMT_FLOAT:
|
||||
#ifdef HAVE_LIBOIL
|
||||
oil_divide_f32( (float *) out,
|
||||
(float *) in[0], (float *) in[1], sz );
|
||||
#else /*!HAVE_LIBOIL*/
|
||||
rloop( float );
|
||||
RLOOP( float, float );
|
||||
#endif /*HAVE_LIBOIL*/
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_DOUBLE: rloop( double ); break;
|
||||
case IM_BANDFMT_COMPLEX: cloop( float ); break;
|
||||
case IM_BANDFMT_DPCOMPLEX: cloop( double ); break;
|
||||
case IM_BANDFMT_DOUBLE: RLOOP( double, double ); break;
|
||||
case IM_BANDFMT_COMPLEX: CLOOP( float ); break;
|
||||
case IM_BANDFMT_DPCOMPLEX: CLOOP( double ); break;
|
||||
|
||||
default:
|
||||
assert( 0 );
|
||||
}
|
||||
}
|
||||
|
||||
/* Save a bit of typing.
|
||||
*/
|
||||
#define F IM_BANDFMT_FLOAT
|
||||
#define X IM_BANDFMT_COMPLEX
|
||||
#define D IM_BANDFMT_DOUBLE
|
||||
#define DX IM_BANDFMT_DPCOMPLEX
|
||||
|
||||
/* Type promotion for division. Sign and value preserving. Make sure
|
||||
* these match the case statement in divide_buffer() above.
|
||||
*/
|
||||
static int bandfmt_divide[10] = {
|
||||
/* UC C US S UI I F X D DX */
|
||||
F, F, F, F, F, F, F, X, D, DX
|
||||
};
|
||||
|
||||
/**
|
||||
* im_divide:
|
||||
* @in1: input #IMAGE 1
|
||||
* @in2: input #IMAGE 2
|
||||
* @out: output #IMAGE
|
||||
*
|
||||
* This operation calculates @in1 / @in2 and writes the result to @out.
|
||||
* The images must be the same size. They may have any format.
|
||||
*
|
||||
* If the number of bands differs, one of the images
|
||||
* must have one band. In this case, an n-band image is formed from the
|
||||
* one-band image by joining n copies of the one-band image together, and then
|
||||
* the two n-band images are operated upon.
|
||||
*
|
||||
* The two input images are cast up to the smallest common type (see table
|
||||
* Smallest common format in
|
||||
* <link linkend="VIPS-arithmetic">arithmetic</link>), then the
|
||||
* following table is used to determine the output type:
|
||||
*
|
||||
* <table>
|
||||
* <title>im_divide() type promotion</title>
|
||||
* <tgroup cols='2' align='left' colsep='1' rowsep='1'>
|
||||
* <thead>
|
||||
* <row>
|
||||
* <entry>input type</entry>
|
||||
* <entry>output type</entry>
|
||||
* </row>
|
||||
* </thead>
|
||||
* <tbody>
|
||||
* <row>
|
||||
* <entry>uchar</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>char</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>ushort</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>short</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>uint</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>int</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>float</entry>
|
||||
* <entry>float</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>double</entry>
|
||||
* <entry>double</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>complex</entry>
|
||||
* <entry>complex</entry>
|
||||
* </row>
|
||||
* <row>
|
||||
* <entry>double complex</entry>
|
||||
* <entry>double complex</entry>
|
||||
* </row>
|
||||
* </tbody>
|
||||
* </tgroup>
|
||||
* </table>
|
||||
*
|
||||
* In other words, the output type is just large enough to hold the whole
|
||||
* range of possible values.
|
||||
*
|
||||
* See also: im_multiply(), im_lintra().
|
||||
*
|
||||
* Returns: 0 on success, -1 on error
|
||||
*/
|
||||
int
|
||||
im_divide( IMAGE *in1, IMAGE *in2, IMAGE *out )
|
||||
{
|
||||
@ -187,34 +285,10 @@ im_divide( IMAGE *in1, IMAGE *in2, IMAGE *out )
|
||||
*/
|
||||
out->Bands = IM_MAX( in1->Bands, in2->Bands );
|
||||
|
||||
/* What output type will we write? float, double or complex.
|
||||
/* What output type will we write? int, float or complex.
|
||||
*/
|
||||
if( im_iscomplex( in1 ) || im_iscomplex( in2 ) ) {
|
||||
/* What kind of complex?
|
||||
*/
|
||||
if( in1->BandFmt == IM_BANDFMT_DPCOMPLEX ||
|
||||
in2->BandFmt == IM_BANDFMT_DPCOMPLEX )
|
||||
/* Output will be DPCOMPLEX.
|
||||
*/
|
||||
out->BandFmt = IM_BANDFMT_DPCOMPLEX;
|
||||
else
|
||||
out->BandFmt = IM_BANDFMT_COMPLEX;
|
||||
|
||||
}
|
||||
else if( im_isfloat( in1 ) || im_isfloat( in2 ) ) {
|
||||
/* What kind of float?
|
||||
*/
|
||||
if( in1->BandFmt == IM_BANDFMT_DOUBLE ||
|
||||
in2->BandFmt == IM_BANDFMT_DOUBLE )
|
||||
out->BandFmt = IM_BANDFMT_DOUBLE;
|
||||
else
|
||||
out->BandFmt = IM_BANDFMT_FLOAT;
|
||||
}
|
||||
else {
|
||||
/* An int type -- output must be just float.
|
||||
*/
|
||||
out->BandFmt = IM_BANDFMT_FLOAT;
|
||||
}
|
||||
out->BandFmt = bandfmt_divide[im__format_common( in1, in2 )];
|
||||
out->Bbits = im_bits_of_fmt( out->BandFmt );
|
||||
|
||||
/* And process!
|
||||
*/
|
||||
|
@ -1,13 +1,4 @@
|
||||
/* @(#) Multiply two images
|
||||
* @(#) Images must have the same no of bands and can be of any type
|
||||
* @(#) No check for overflow is carried out.
|
||||
* @(#)
|
||||
* @(#) int
|
||||
* @(#) im_multiply(in1, in2, out)
|
||||
* @(#) IMAGE *in1, *in2, *out;
|
||||
* @(#)
|
||||
* @(#) Returns 0 on success and -1 on error
|
||||
* @(#)
|
||||
/* im_multiply.c
|
||||
*
|
||||
* Copyright: 1990, N. Dessipris.
|
||||
*
|
||||
@ -32,7 +23,6 @@
|
||||
* 18/8/08
|
||||
* - revise upcasting system
|
||||
* - add gtkdoc comments
|
||||
* - remove separate complex case, just double size
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -82,7 +72,32 @@
|
||||
#include <dmalloc.h>
|
||||
#endif /*WITH_DMALLOC*/
|
||||
|
||||
#define LOOP( IN, OUT ) { \
|
||||
/* Complex multiply.
|
||||
*/
|
||||
#define CLOOP( TYPE ) { \
|
||||
TYPE *p1 = (TYPE *) in[0]; \
|
||||
TYPE *p2 = (TYPE *) in[1]; \
|
||||
TYPE *q = (TYPE *) out; \
|
||||
\
|
||||
for( x = 0; x < sz; x++ ) { \
|
||||
double x1 = p1[0]; \
|
||||
double y1 = p1[1]; \
|
||||
double x2 = p2[0]; \
|
||||
double y2 = p2[1]; \
|
||||
\
|
||||
p1 += 2; \
|
||||
p2 += 2; \
|
||||
\
|
||||
q[0] = x1 * x2 - y1 * y2; \
|
||||
q[1] = x1 * y2 + x2 * y1; \
|
||||
\
|
||||
q += 2; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Real multiply.
|
||||
*/
|
||||
#define RLOOP( IN, OUT ) { \
|
||||
IN *p1 = (IN *) in[0]; \
|
||||
IN *p2 = (IN *) in[1]; \
|
||||
OUT *q = (OUT *) out; \
|
||||
@ -94,9 +109,7 @@
|
||||
static void
|
||||
multiply_buffer( PEL **in, PEL *out, int width, IMAGE *im )
|
||||
{
|
||||
/* Complex just doubles the size.
|
||||
*/
|
||||
const int sz = width * im->Bands * (im_iscomplex( im ) ? 2 : 1);
|
||||
const int sz = width * im->Bands;
|
||||
|
||||
int x;
|
||||
|
||||
@ -104,27 +117,25 @@ multiply_buffer( PEL **in, PEL *out, int width, IMAGE *im )
|
||||
* bandfmt_multiply[] below.
|
||||
*/
|
||||
switch( im->BandFmt ) {
|
||||
case IM_BANDFMT_CHAR: LOOP( signed char, signed short ); break;
|
||||
case IM_BANDFMT_UCHAR: LOOP( unsigned char, unsigned short ); break;
|
||||
case IM_BANDFMT_SHORT: LOOP( signed short, signed int ); break;
|
||||
case IM_BANDFMT_USHORT: LOOP( unsigned short, unsigned int ); break;
|
||||
case IM_BANDFMT_INT: LOOP( signed int, signed int ); break;
|
||||
case IM_BANDFMT_UINT: LOOP( unsigned int, unsigned int ); break;
|
||||
case IM_BANDFMT_CHAR: RLOOP( signed char, signed short ); break;
|
||||
case IM_BANDFMT_UCHAR: RLOOP( unsigned char, unsigned short ); break;
|
||||
case IM_BANDFMT_SHORT: RLOOP( signed short, signed int ); break;
|
||||
case IM_BANDFMT_USHORT: RLOOP( unsigned short, unsigned int ); break;
|
||||
case IM_BANDFMT_INT: RLOOP( signed int, signed int ); break;
|
||||
case IM_BANDFMT_UINT: RLOOP( unsigned int, unsigned int ); break;
|
||||
|
||||
case IM_BANDFMT_FLOAT:
|
||||
case IM_BANDFMT_COMPLEX:
|
||||
#ifdef HAVE_LIBOIL
|
||||
oil_multiply_f32( (float *) out,
|
||||
(float *) in[0], (float *) in[1], sz );
|
||||
#else /*!HAVE_LIBOIL*/
|
||||
LOOP( float, float );
|
||||
RLOOP( float, float );
|
||||
#endif /*HAVE_LIBOIL*/
|
||||
break;
|
||||
|
||||
case IM_BANDFMT_DOUBLE:
|
||||
case IM_BANDFMT_DPCOMPLEX:
|
||||
LOOP( double, double );
|
||||
break;
|
||||
case IM_BANDFMT_COMPLEX: CLOOP( float ); break;
|
||||
case IM_BANDFMT_DOUBLE: RLOOP( double, double ); break;
|
||||
case IM_BANDFMT_DPCOMPLEX: CLOOP( double ); break;
|
||||
|
||||
default:
|
||||
assert( 0 );
|
||||
@ -172,7 +183,7 @@ static int bandfmt_multiply[10] = {
|
||||
* following table is used to determine the output type:
|
||||
*
|
||||
* <table>
|
||||
* <title>im_add() type promotion</title>
|
||||
* <title>im_multiply() type promotion</title>
|
||||
* <tgroup cols='2' align='left' colsep='1' rowsep='1'>
|
||||
* <thead>
|
||||
* <row>
|
||||
|
@ -1,4 +1,4 @@
|
||||
/* @(#) Remainder after integer division
|
||||
/* im_remainder.c
|
||||
*
|
||||
* 2/8/99 JC
|
||||
* - im_divide adapted to make im_remainder
|
||||
@ -56,16 +56,16 @@
|
||||
#include <dmalloc.h>
|
||||
#endif /*WITH_DMALLOC*/
|
||||
|
||||
#define loop(TYPE) {\
|
||||
TYPE *p1 = (TYPE *) in[0];\
|
||||
TYPE *p2 = (TYPE *) in[1];\
|
||||
TYPE *q = (TYPE *) out;\
|
||||
#define LOOP(TYPE) { \
|
||||
TYPE *p1 = (TYPE *) in[0]; \
|
||||
TYPE *p2 = (TYPE *) in[1]; \
|
||||
TYPE *q = (TYPE *) out; \
|
||||
\
|
||||
for( x = 0; x < sz; x++ )\
|
||||
if( p2[x] )\
|
||||
q[x] = p1[x] % p2[x];\
|
||||
else\
|
||||
q[x] = -1;\
|
||||
for( x = 0; x < sz; x++ ) \
|
||||
if( p2[x] ) \
|
||||
q[x] = p1[x] % p2[x]; \
|
||||
else \
|
||||
q[x] = -1; \
|
||||
}
|
||||
|
||||
static void
|
||||
@ -75,39 +75,38 @@ remainder_buffer( PEL **in, PEL *out, int width, IMAGE *im )
|
||||
int sz = width * im->Bands;
|
||||
|
||||
switch( im->BandFmt ) {
|
||||
case IM_BANDFMT_CHAR: loop( signed char ); break;
|
||||
case IM_BANDFMT_UCHAR: loop( unsigned char ); break;
|
||||
case IM_BANDFMT_SHORT: loop( signed short ); break;
|
||||
case IM_BANDFMT_USHORT: loop( unsigned short ); break;
|
||||
case IM_BANDFMT_INT: loop( signed int ); break;
|
||||
case IM_BANDFMT_UINT: loop( unsigned int ); break;
|
||||
case IM_BANDFMT_CHAR: LOOP( signed char ); break;
|
||||
case IM_BANDFMT_UCHAR: LOOP( unsigned char ); break;
|
||||
case IM_BANDFMT_SHORT: LOOP( signed short ); break;
|
||||
case IM_BANDFMT_USHORT: LOOP( unsigned short ); break;
|
||||
case IM_BANDFMT_INT: LOOP( signed int ); break;
|
||||
case IM_BANDFMT_UINT: LOOP( unsigned int ); break;
|
||||
|
||||
default:
|
||||
assert( 0 );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
.B im_remainder(3)
|
||||
calculates the remainder after integer division of two images. The output
|
||||
type is the same as the type of
|
||||
.B in1
|
||||
unless
|
||||
.B in1
|
||||
is float or complex, in which
|
||||
case the output type is signed integer.
|
||||
*/
|
||||
int
|
||||
im_remainder( IMAGE *in1, IMAGE *in2, IMAGE *out )
|
||||
{
|
||||
/* Basic checks.
|
||||
*/
|
||||
if( im_piocheck( in1, out ) || im_pincheck( in2 ) )
|
||||
if( im_piocheck( in1, out ) ||
|
||||
im_pincheck( in2 ) ||
|
||||
im_check_bands_1orn( "im_remainder", in1, in2 ) ||
|
||||
im_check_uncoded( "im_remainder", in1 ) ||
|
||||
im_check_uncoded( "im_remainder", in2 ) )
|
||||
return( -1 );
|
||||
if( in1->Xsize != in2->Xsize || in1->Ysize != in2->Ysize ) {
|
||||
im_error( "im_remainder", "%s", _( "not same size" ) );
|
||||
return( -1 );
|
||||
}
|
||||
if( in1->Bands != in2->Bands &&
|
||||
(in1->Bands != 1 && in2->Bands != 1) ) {
|
||||
im_error( "im_remainder",
|
||||
"%s", _( "not same number of bands" ) );
|
||||
return( -1 );
|
||||
}
|
||||
if( in1->Coding != IM_CODING_NONE || in2->Coding != IM_CODING_NONE ) {
|
||||
im_error( "im_remainder", "%s", _( "not uncoded" ) );
|
||||
return( -1 );
|
||||
}
|
||||
|
||||
if( im_cp_descv( out, in1, in2, NULL ) )
|
||||
return( -1 );
|
||||
|
||||
@ -120,6 +119,7 @@ im_remainder( IMAGE *in1, IMAGE *in2, IMAGE *out )
|
||||
*/
|
||||
if( im_isfloat( in1 ) || im_iscomplex( in1 ) )
|
||||
out->BandFmt = IM_BANDFMT_INT;
|
||||
out->Bbits = im_bits_of_fmt( out->BandFmt );
|
||||
|
||||
/* And process!
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user