add VipsLinear

remove im_lintra*(), redone as a class
This commit is contained in:
John Cupitt 2011-10-31 14:25:27 +00:00
parent 55aab0236f
commit 735749a4a2
12 changed files with 263 additions and 479 deletions

View File

@ -3,7 +3,8 @@
- im_subtract(), im_avg(), im_min(), im_minpos(), im_copy(), im_embed(),
im_flophor(), im_flipver(), im_insert(), im_insert_noexpand(), im_lrjoin(),
im_tbjoin(), im_extract_area(), im_extract_bands(), im_extract_areabands(),
im_replicate(), im_clip2fmt(), im_gbandjoin(), im_bandjoin(), im_invert()
im_replicate(), im_clip2fmt(), im_gbandjoin(), im_bandjoin(), im_invert(),
im_lintra(), im_lintra_vec()
redone as classes
- added argument priorites to help control arg ordering
- generate has a 'stop' param to signal successful early termination
@ -27,7 +28,7 @@
- added vips_region_paint_pel()
- added VipsArea as a public struct
- added array members and arguments
- Unary
- added nary
12/10/11 started 7.26.6
- NOCACHE was not being set correctly on OS X causing performance

16
TODO
View File

@ -1,5 +1,14 @@
- lintra_vec next
- do clip etc. in new style, good to get everything that VipsAdd uses in
the new stack
insert* needs clip, lintra_vec
can we move everything to new-style ops now?
- what's the performance hit for removing the 1ary lintra path?
@ -39,11 +48,6 @@ vips__vector_to_ink: ink = 0x177d660 (0 0 0)
- do clip etc. in new style, good to get everything that VipsAdd uses in
the new stack
insert* needs clip, lintra_vec

View File

@ -9,7 +9,6 @@ libarithmetic_la_SOURCES = \
im_divide.c \
im_recomb.c \
im_linreg.c \
im_lintra.c \
im_maxpos_avg.c \
im_maxpos.c \
im_maxpos_vec.c \
@ -32,6 +31,7 @@ libarithmetic_la_SOURCES = \
unary.c \
unary.h \
add.c \
linear.c \
invert.c \
power.c \
round.c

View File

@ -175,17 +175,23 @@ vips__bandup( const char *domain, VipsImage *in, VipsImage **out, int n )
return( vips_bandjoin( bands, out, n, NULL ) );
}
/* base_bands is the default minimum.
*
* Handy for example, if you have VipsLinear with
* a 3-element vector of constants and a 1-band input image, you need to cast
* the image up to three bands.
*/
int
vips__bandalike_vec( const char *domain,
VipsImage **in, VipsImage **out, int n )
VipsImage **in, VipsImage **out, int n, int base_bands )
{
int i;
int max_bands;
g_assert( n >= 1 );
max_bands = in[0]->Bands;
for( i = 1; i < n; i++ )
max_bands = base_bands;
for( i = 0; i < n; i++ )
max_bands = VIPS_MAX( max_bands, in[i]->Bands );
for( i = 0; i < n; i++ )
if( vips__bandup( domain, in[i], &out[i], max_bands ) )
@ -242,7 +248,7 @@ vips__bandalike( const char *domain,
in[0] = in1;
in[1] = in2;
if( vips__bandalike_vec( domain, in, out, 2 ) )
if( vips__bandalike_vec( domain, in, out, 2, 1 ) )
return( -1 );
*out1 = out[0];
@ -310,6 +316,8 @@ vips_arithmetic_build( VipsObject *object )
if( VIPS_OBJECT_CLASS( vips_arithmetic_parent_class )->build( object ) )
return( -1 );
/* No need to check input bands, bandalike will do this for us.
*/
if( arithmetic->n > MAX_INPUT_IMAGES ) {
vips_error( "VipsArithmetic",
"%s", _( "too many input images" ) );
@ -317,8 +325,6 @@ vips_arithmetic_build( VipsObject *object )
}
for( i = 0; i < arithmetic->n; i++ )
if( vips_image_pio_input( arithmetic->in[i] ) ||
vips_check_bands_1orn( "VipsArithmetic",
arithmetic->in[0], arithmetic->in[i] ) ||
vips_check_uncoded( "VipsArithmetic",
arithmetic->in[i] ) )
return( -1 );
@ -336,7 +342,7 @@ vips_arithmetic_build( VipsObject *object )
*/
if( vips__formatalike_vec( arithmetic->in, format, arithmetic->n ) ||
vips__bandalike_vec( "VipsArithmetic",
format, band, arithmetic->n ) ||
format, band, arithmetic->n, arithmetic->base_bands ) ||
vips__sizealike_vec( band, size, arithmetic->n ) )
return( -1 );
@ -406,6 +412,7 @@ vips_arithmetic_class_init( VipsArithmeticClass *class )
static void
vips_arithmetic_init( VipsArithmetic *arithmetic )
{
arithmetic->base_bands = 1;
}
void
@ -499,11 +506,13 @@ vips_arithmetic_operation_init( void )
extern GType vips_subtract_get_type( void );
extern GType vips_avg_get_type( void );
extern GType vips_min_get_type( void );
extern GType vips_linear_get_type( void );
vips_add_get_type();
vips_invert_get_type();
vips_subtract_get_type();
vips_avg_get_type();
vips_min_get_type();
vips_linear_get_type();
}

View File

@ -76,6 +76,11 @@ typedef struct _VipsArithmetic {
VipsImage **in;
int n;
/* The minimum number of output bands. For example, VipsLinear with a
* three element constant must make at least a three-band output.
*/
int base_bands;
/* The input images, ready for the operation.
*/
VipsImage **ready;

View File

@ -1,355 +0,0 @@
/* im_lintra.c -- linear transform
*
* Copyright: 1990, N. Dessipris, based on im_powtra()
* Author: Nicos Dessipris
* Written on: 02/05/1990
* Modified on:
* 23/4/93 JC
* - adapted to work with partial images
* 1/7/93 JC
* - adapted for partial v2
* 7/10/94 JC
* - new IM_NEW()
* - more typedefs
* 9/2/95 JC
* - adapted for im_wrap...
* - operations on complex images now just transform the real channel
* 29/9/95 JC
* - complex was broken
* 15/4/97 JC
* - return(0) missing from generate, arrgh!
* 1/7/98 JC
* - im_lintra_vec added
* 3/8/02 JC
* - fall back to im_copy() for a == 1, b == 0
* 10/10/02 JC
* - auug, failing to multiply imag for complex! (thanks matt)
* 10/12/02 JC
* - removed im_copy() fallback ... meant that output format could change
* with value :-( very confusing
* 30/6/04
* - added 1 band image * n band vector case
* 8/12/06
* - add liboil support
* 9/9/09
* - gtkdoc comment, minor reformat
* 31/7/10
* - remove liboil
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/internal.h>
/* Struct we need for im_generate().
*/
typedef struct {
int n; /* Number of bands of constants */
double *a, *b;
} LintraInfo;
/* Define what we do for each band element type. Non-complex input, any
* output.
*/
#define LOOP( IN, OUT ) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < sz; x++ ) \
q[x] = a * (OUT) p[x] + b; \
}
/* Complex input, complex output.
*/
#define LOOPCMPLX( IN, OUT ) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < sz; x++ ) { \
q[0] = a * p[0] + b; \
q[1] = a * p[1]; \
q += 2; \
p += 2; \
} \
}
/* Lintra a buffer, 1 set of scale/offset.
*/
static int
lintra1_gen( PEL *in, PEL *out, int width, IMAGE *im, LintraInfo *inf )
{
double a = inf->a[0];
double b = inf->b[0];
int sz = width * im->Bands;
int x;
/* Lintra all input types.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOP( unsigned char, float ); break;
case IM_BANDFMT_CHAR: LOOP( signed char, float ); break;
case IM_BANDFMT_USHORT: LOOP( unsigned short, float ); break;
case IM_BANDFMT_SHORT: LOOP( signed short, float ); break;
case IM_BANDFMT_UINT: LOOP( unsigned int, float ); break;
case IM_BANDFMT_INT: LOOP( signed int, float ); break;
case IM_BANDFMT_FLOAT: LOOP( float, float ); break;
case IM_BANDFMT_DOUBLE: LOOP( double, double ); break;
case IM_BANDFMT_COMPLEX: LOOPCMPLX( float, float ); break;
case IM_BANDFMT_DPCOMPLEX: LOOPCMPLX( double, double ); break;
default:
g_assert( 0 );
}
return( 0 );
}
/* Define what we do for each band element type. Non-complex input, any
* output.
*/
#define LOOPN( IN, OUT ) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) \
q[i] = a[k] * (OUT) p[i] + b[k]; \
}
/* Complex input, complex output.
*/
#define LOOPCMPLXN( IN, OUT ) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++ ) { \
q[0] = a[k] * p[0] + b[k]; \
q[1] = a[k] * p[1]; \
q += 2; \
p += 2; \
} \
}
/* Lintra a buffer, n set of scale/offset.
*/
static int
lintran_gen( PEL *in, PEL *out, int width, IMAGE *im, LintraInfo *inf )
{
double *a = inf->a;
double *b = inf->b;
int nb = im->Bands;
int i, x, k;
/* Lintra all input types.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOPN( unsigned char, float ); break;
case IM_BANDFMT_CHAR: LOOPN( signed char, float ); break;
case IM_BANDFMT_USHORT: LOOPN( unsigned short, float ); break;
case IM_BANDFMT_SHORT: LOOPN( signed short, float ); break;
case IM_BANDFMT_UINT: LOOPN( unsigned int, float ); break;
case IM_BANDFMT_INT: LOOPN( signed int, float ); break;
case IM_BANDFMT_FLOAT: LOOPN( float, float ); break;
case IM_BANDFMT_DOUBLE: LOOPN( double, double ); break;
case IM_BANDFMT_COMPLEX: LOOPCMPLXN( float, float ); break;
case IM_BANDFMT_DPCOMPLEX: LOOPCMPLXN( double, double ); break;
default:
g_assert( 0 );
}
return( 0 );
}
/* 1 band image, n band vector.
*/
#define LOOPNV( IN, OUT ) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( i = 0, x = 0; x < width; x++ ) { \
OUT v = p[x]; \
\
for( k = 0; k < nb; k++, i++ ) \
q[i] = a[k] * v + b[k]; \
} \
}
#define LOOPCMPLXNV( IN, OUT ) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < width; x++ ) { \
OUT p0 = p[0]; \
OUT p1 = p[1]; \
\
for( k = 0; k < nb; k++ ) { \
q[0] = a[k] * p0 + b[k]; \
q[1] = a[k] * p1; \
q += 2; \
} \
\
p += 2; \
} \
}
static int
lintranv_gen( PEL *in, PEL *out, int width, IMAGE *im, LintraInfo *inf )
{
double *a = inf->a;
double *b = inf->b;
int nb = inf->n;
int i, x, k;
/* Lintra all input types.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOPNV( unsigned char, float ); break;
case IM_BANDFMT_CHAR: LOOPNV( signed char, float ); break;
case IM_BANDFMT_USHORT: LOOPNV( unsigned short, float ); break;
case IM_BANDFMT_SHORT: LOOPNV( signed short, float ); break;
case IM_BANDFMT_UINT: LOOPNV( unsigned int, float ); break;
case IM_BANDFMT_INT: LOOPNV( signed int, float ); break;
case IM_BANDFMT_FLOAT: LOOPNV( float, float ); break;
case IM_BANDFMT_DOUBLE: LOOPNV( double, double ); break;
case IM_BANDFMT_COMPLEX: LOOPCMPLXNV( float, float ); break;
case IM_BANDFMT_DPCOMPLEX: LOOPCMPLXNV( double, double ); break;
default:
g_assert( 0 );
}
return( 0 );
}
/**
* im_lintra_vec:
* @n: array size
* @a: array of constants for multiplication
* @in: image to transform
* @b: array of constants for addition
* @out: output image
*
* Pass an image through a linear transform - ie. @out = @in * @a + @b. Output
* is always float for integer input, double for double input, complex for
* complex input and double complex for double complex input.
*
* If the arrays of constants have just one element, that constant are used for
* all image bands. If the arrays have more than one element and they have
* the same number of elements as there are bands in the image, then
* one array element is used for each band. If the arrays have more than one
* element and the image only has a single band, the result is a many-band
* image where each band corresponds to one array element.
*
* See also: im_add(), im_lintra().
*
* Returns: 0 on success, -1 on error
*/
int
im_lintra_vec( int n, double *a, IMAGE *in, double *b, IMAGE *out )
{
LintraInfo *inf;
int i;
if( im_piocheck( in, out ) ||
im_check_vector( "im_lintra_vec", n, in ) ||
im_check_uncoded( "lintra_vec", in ) )
return( -1 );
/* Prepare output header.
*/
if( im_cp_desc( out, in ) )
return( -1 );
if( vips_bandfmt_isint( in->BandFmt ) )
out->BandFmt = IM_BANDFMT_FLOAT;
if( in->Bands == 1 )
out->Bands = n;
/* Make space for a little buffer.
*/
if( !(inf = IM_NEW( out, LintraInfo )) ||
!(inf->a = IM_ARRAY( out, n, double )) ||
!(inf->b = IM_ARRAY( out, n, double )) )
return( -1 );
inf->n = n;
for( i = 0; i < n; i++ ) {
inf->a[i] = a[i];
inf->b[i] = b[i];
}
/* Generate!
*/
if( n == 1 ) {
if( im_wrapone( in, out,
(im_wrapone_fn) lintra1_gen, in, inf ) )
return( -1 );
}
else if( in->Bands == 1 ) {
if( im_wrapone( in, out,
(im_wrapone_fn) lintranv_gen, in, inf ) )
return( -1 );
}
else {
if( im_wrapone( in, out,
(im_wrapone_fn) lintran_gen, in, inf ) )
return( -1 );
}
return( 0 );
}
/**
* im_lintra:
* @a: constant for multiplication
* @in: image to transform
* @b: constant for addition
* @out: output image
*
* Pass an image through a linear transform - ie. @out = @in * @a + @b. Output
* is always float for integer input, double for double input, complex for
* complex input and double complex for double complex input.
*
* See also: im_add(), im_lintra_vec().
*
* Returns: 0 on success, -1 on error
*/
int
im_lintra( double a, IMAGE *in, double b, IMAGE *out )
{
return( im_lintra_vec( 1, &a, in, &b, out ) );
}

View File

@ -85,14 +85,23 @@
/**
* VipsLinear:
* @in: input #VipsImage
* @out: output #VipsImage
* @in: image to transform
* @out: output image
* @a: array of constants for multiplication
* @b: array of constants for addition
*
* For unsigned formats, this operation calculates (max - @in), eg. (255 -
* @in) for uchar. For signed and float formats, this operation calculates (-1
* * @in).
* Pass an image through a linear transform, ie. (@out = @in * @a + @b). Output
* is always float for integer input, double for double input, complex for
* complex input and double complex for double complex input.
*
* See also: im_lintra().
* If the arrays of constants have just one element, that constant is used for
* all image bands. If the arrays have more than one element and they have
* the same number of elements as there are bands in the image, then
* one array element is used for each band. If the arrays have more than one
* element and the image only has a single band, the result is a many-band
* image where each band corresponds to one array element.
*
* See also: #VipsAdd.
*
* Returns: 0 on success, -1 on error
*/
@ -105,6 +114,12 @@ typedef struct _VipsLinear {
VipsArea *a;
VipsArea *b;
/* Our constants expanded to match arith->ready in size.
*/
int n;
double *a_ready;
double *b_ready;
} VipsLinear;
typedef VipsUnaryClass VipsLinearClass;
@ -115,65 +130,111 @@ static int
vips_linear_build( VipsObject *object )
{
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( object );
VipsUnary *unary = (VipsUnary *) object;
VipsLinear *linear = (VipsLinear *) object;
int i;
if( VIPS_OBJECT_CLASS( vips_insert_parent_class )->build( object ) )
/* If we have a three-element vector, we need to bandup the image to
* match.
*/
linear->n = 1;
if( linear->a )
linear->n = VIPS_MAX( linear->n, linear->b->n );
if( linear->b )
linear->n = VIPS_MAX( linear->n, linear->b->n );
if( unary->in )
linear->n = VIPS_MAX( linear->n, unary->in->Bands );
arithmetic->base_bands = linear->n;
if( unary->in ) {
if( vips_check_vector( "VipsLinear",
linear->a->n, unary->in ) ||
vips_check_vector( "VipsLinear",
linear->b->n, unary->in ) )
return( -1 );
}
if( vips_check_vector( "VipsLinear",
linear->a->n, arithmetic->in[0] ) ||
vips_check_vector( "VipsLinear",
linear->b->n, arithmetic->in[0] ) )
/* Make up-banded versions of our constants.
*/
linear->a_ready = g_new( double, linear->n );
linear->b_ready = g_new( double, linear->n );
for( i = 0; i < linear->n; i++ ) {
if( linear->a ) {
double *ary = (double *) linear->a->data;
int j = VIPS_MIN( i, linear->a->n - 1 );
linear->a_ready[i] = ary[j];
}
if( linear->b ) {
double *ary = (double *) linear->b->data;
int j = VIPS_MIN( i, linear->b->n - 1 );
linear->b_ready[i] = ary[j];
}
}
if( VIPS_OBJECT_CLASS( vips_linear_parent_class )->build( object ) )
return( -1 );
how do we do this?? unary or arithmetic needs a bit of chopping about
if( in->Bands == 1 )
out->Bands = n;
bandalike a and b
return( 0 );
}
/* Non-complex input, any output.
*/
#define LOOPN( IN, OUT ) { \
IN *p = (IN *) in[0]; \
OUT *q = (OUT *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) \
q[i] = a[k] * (OUT) p[i] + b[k]; \
}
/* Complex input, complex output.
*/
#define LOOPCMPLXN( IN, OUT ) { \
IN *p = (IN *) in[0]; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++ ) { \
q[0] = a[k] * p[0] + b[k]; \
q[1] = a[k] * p[1]; \
q += 2; \
p += 2; \
} \
}
/* Lintra a buffer, n set of scale/offset.
*/
static void
vips_linear_buffer( VipsArithmetic *arithmetic, PEL *out, PEL **in, int width )
{
VipsImage *im = arithmetic->ready[0];
VipsLinear *linear = (VipsLinear *) arithmetic;
double *a = linear->a_ready;
double *b = linear->b_ready;
int nb = im->Bands;
/* Complex just doubles the size.
*/
const int sz = width * vips_image_get_bands( im ) *
(vips_band_format_iscomplex( vips_image_get_format( im ) ) ?
2 : 1);
int x;
int i, x, k;
switch( vips_image_get_format( im ) ) {
case VIPS_FORMAT_UCHAR:
LOOP( unsigned char, UCHAR_MAX ); break;
case VIPS_FORMAT_CHAR:
LOOPN( signed char ); break;
case VIPS_FORMAT_USHORT:
LOOP( unsigned short, USHRT_MAX ); break;
case VIPS_FORMAT_SHORT:
LOOPN( signed short ); break;
case VIPS_FORMAT_UINT:
LOOP( unsigned int, UINT_MAX ); break;
case VIPS_FORMAT_INT:
LOOPN( signed int ); break;
case VIPS_FORMAT_UCHAR: LOOPN( unsigned char, float ); break;
case VIPS_FORMAT_CHAR: LOOPN( signed char, float ); break;
case VIPS_FORMAT_USHORT: LOOPN( unsigned short, float ); break;
case VIPS_FORMAT_SHORT: LOOPN( signed short, float ); break;
case VIPS_FORMAT_UINT: LOOPN( unsigned int, float ); break;
case VIPS_FORMAT_INT: LOOPN( signed int, float ); break;
case VIPS_FORMAT_FLOAT: LOOPN( float, float ); break;
case VIPS_FORMAT_DOUBLE: LOOPN( double, double ); break;
case VIPS_FORMAT_COMPLEX: LOOPCMPLXN( float, float ); break;
case VIPS_FORMAT_DPCOMPLEX: LOOPCMPLXN( double, double ); break;
case VIPS_FORMAT_FLOAT:
case VIPS_FORMAT_COMPLEX:
LOOPN( float ); break;
case VIPS_FORMAT_DOUBLE:
case VIPS_FORMAT_DPCOMPLEX:
LOOPN( double ); break;
default:
default:
g_assert( 0 );
}
}
}
/* Save a bit of typing.
@ -193,55 +254,19 @@ vips_linear_buffer( VipsArithmetic *arithmetic, PEL *out, PEL **in, int width )
*/
static const VipsBandFormat vips_bandfmt_linear[10] = {
/* UC C US S UI I F X D DX */
F, F F, F, F, F, F, X, D, DX
F, F, F, F, F, F, F, X, D, DX
};
static void
vips_invert_buffer( VipsArithmetic *arithmetic, PEL *out, PEL **in, int width )
{
VipsImage *im = arithmetic->ready[0];
/* Complex just doubles the size.
*/
const int sz = width * vips_image_get_bands( im ) *
(vips_band_format_iscomplex( vips_image_get_format( im ) ) ?
2 : 1);
int x;
switch( vips_image_get_format( im ) ) {
case VIPS_FORMAT_UCHAR:
LOOP( unsigned char, UCHAR_MAX ); break;
case VIPS_FORMAT_CHAR:
LOOPN( signed char ); break;
case VIPS_FORMAT_USHORT:
LOOP( unsigned short, USHRT_MAX ); break;
case VIPS_FORMAT_SHORT:
LOOPN( signed short ); break;
case VIPS_FORMAT_UINT:
LOOP( unsigned int, UINT_MAX ); break;
case VIPS_FORMAT_INT:
LOOPN( signed int ); break;
case VIPS_FORMAT_FLOAT:
case VIPS_FORMAT_COMPLEX:
LOOPN( float ); break;
case VIPS_FORMAT_DOUBLE:
case VIPS_FORMAT_DPCOMPLEX:
LOOPN( double ); break;
default:
g_assert( 0 );
}
}
static void
vips_linear_class_init( VipsLinearClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsArithmeticClass *aclass = VIPS_ARITHMETIC_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "linear";
object_class->description = _( "calculate (a * in + b)" );
object_class->build = vips_linear_build;
@ -250,17 +275,17 @@ vips_linear_class_init( VipsLinearClass *class )
aclass->process_line = vips_linear_buffer;
VIPS_ARG_BOXED( class, "a", 4,
VIPS_ARG_BOXED( class, "a", 110,
_( "a" ),
_( "Multiply by this" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLinear, a ),
VIPS_TYPE_ARRAY_DOUBLE );
VIPS_ARG_BOXED( class, "b", 5,
VIPS_ARG_BOXED( class, "b", 111,
_( "b" ),
_( "Add this" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLinear, b ),
VIPS_TYPE_ARRAY_DOUBLE );
@ -272,14 +297,58 @@ vips_linear_init( VipsLinear *linear )
}
int
vips_linear( VipsImage *in, VipsImage **out, ... )
vips_linear( VipsImage *in, VipsImage **out, double *a, double *b, int n, ... )
{
va_list ap;
VipsArea *area_a;
VipsArea *area_b;
double *array;
int result;
int i;
va_start( ap, out );
result = vips_call_split( "linear", ap, in, out );
area_a = vips_area_new_array_object( n );
array = (double *) area_a->data;
for( i = 0; i < n; i++ )
array[i] = a[i];
area_b = vips_area_new_array_object( n );
array = (double *) area_b->data;
for( i = 0; i < n; i++ )
array[i] = b[i];
va_start( ap, n );
result = vips_call_split( "linear", ap, in, out, area_a, area_b );
va_end( ap );
vips_area_unref( area_a );
vips_area_unref( area_b );
return( result );
}
int
vips_linear1( VipsImage *in, VipsImage **out, double a, double b, ... )
{
va_list ap;
VipsArea *area_a;
VipsArea *area_b;
double *array;
int result;
area_a = vips_area_new_array_object( 1 );
array = (double *) area_a->data;
array[0] = a;
area_b = vips_area_new_array_object( 1 );
array = (double *) area_b->data;
array[0] = b;
va_start( ap, b );
result = vips_call_split( "linear", ap, in, out, area_a, area_b );
va_end( ap );
vips_area_unref( area_a );
vips_area_unref( area_b );
return( result );
}

View File

@ -59,7 +59,8 @@ vips_unary_build( VipsObject *object )
arithmetic->n = 1;
arithmetic->in = (VipsImage **) vips_object_local_array( object, 1 );
arithmetic->in[0] = unary->in;
g_object_ref( arithmetic->in[0] );
if( arithmetic->in[0] )
g_object_ref( arithmetic->in[0] );
if( VIPS_OBJECT_CLASS( vips_unary_parent_class )->build( object ) )
return( -1 );

View File

@ -1327,3 +1327,53 @@ im_gbandjoin( VipsImage **in, VipsImage *out, int n )
return( 0 );
}
int
im_invert( IMAGE *in, IMAGE *out )
{
VipsImage *t;
if( vips_invert( in, &t,
NULL ) )
return( -1 );
if( vips_image_write( t, out ) ) {
g_object_unref( t );
return( -1 );
}
g_object_unref( t );
return( 0 );
}
int
im_lintra( double a, IMAGE *in, double b, IMAGE *out )
{
VipsImage *t;
if( vips_linear1( in, &t, a, b,
NULL ) )
return( -1 );
if( vips_image_write( t, out ) ) {
g_object_unref( t );
return( -1 );
}
g_object_unref( t );
return( 0 );
}
int
im_lintra_vec( int n, double *a, IMAGE *in, double *b, IMAGE *out )
{
VipsImage *t;
if( vips_linear( in, &t, a, b, n,
NULL ) )
return( -1 );
if( vips_image_write( t, out ) ) {
g_object_unref( t );
return( -1 );
}
g_object_unref( t );
return( 0 );
}

View File

@ -45,6 +45,13 @@ int vips_avg( VipsImage *in, double *out, ... )
__attribute__((sentinel));
int vips_min( VipsImage *in, double *out, ... )
__attribute__((sentinel));
int vips_invert( VipsImage *in, VipsImage **out, ... )
__attribute__((sentinel));
int vips_linear( VipsImage *in, VipsImage **out,
double *a, double *b, int n, ... )
__attribute__((sentinel));
int vips_linear1( VipsImage *in, VipsImage **out, double a, double b, ... )
__attribute__((sentinel));
@ -62,9 +69,6 @@ int im_maxpos_vec( VipsImage *im, int *xpos, int *ypos, double *maxima, int n );
int im_minpos_vec( VipsImage *im, int *xpos, int *ypos, double *minima, int n );
int im_bandmean( VipsImage *in, VipsImage *out );
int im_invert( VipsImage *in, VipsImage *out );
int im_lintra( double a, VipsImage *in, double b, VipsImage *out );
int im_lintra_vec( int n, double *a, VipsImage *in, double *b, VipsImage *out );
int im_multiply( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_divide( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_remainder( VipsImage *in1, VipsImage *in2, VipsImage *out );

View File

@ -120,7 +120,7 @@ int vips__formatalike_vec( VipsImage **in, VipsImage **out, int n );
int vips__sizealike_vec( VipsImage **in, VipsImage **out, int n );
int vips__bandup( const char *domain, VipsImage *in, VipsImage **out, int n );
int vips__bandalike_vec( const char *domain,
VipsImage **in, VipsImage **out, int n );
VipsImage **in, VipsImage **out, int n, int base_bands );
int vips__formatalike( VipsImage *in1, VipsImage *in2,
VipsImage **out1, VipsImage **out2 );

View File

@ -525,6 +525,9 @@ int im_subtract( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_min( VipsImage *in, double *out );
int im_minpos( VipsImage *in, int *xpos, int *ypos, double *out );
int im_avg( VipsImage *in, double *out );
int im_invert( VipsImage *in, VipsImage *out );
int im_lintra( double a, VipsImage *in, double b, VipsImage *out );
int im_lintra_vec( int n, double *a, VipsImage *in, double *b, VipsImage *out );
int im_copy( VipsImage *in, VipsImage *out );
int im_copy_set( VipsImage *in, VipsImage *out,
@ -536,34 +539,27 @@ int im_copy_morph( VipsImage *in, VipsImage *out,
int bands, VipsBandFormat format, VipsCoding coding );
int im_copy_swap( VipsImage *in, VipsImage *out );
int im_copy_native( VipsImage *in, VipsImage *out, gboolean is_msb_first );
int im_embed( VipsImage *in, VipsImage *out,
int type, int x, int y, int width, int height );
int im_fliphor( VipsImage *in, VipsImage *out );
int im_flipver( VipsImage *in, VipsImage *out );
int im_insert( VipsImage *main, VipsImage *sub, VipsImage *out, int x, int y );
int im_insert_noexpand( VipsImage *main, VipsImage *sub, VipsImage *out, int x, int y );
int im_lrjoin( VipsImage *left, VipsImage *right, VipsImage *out );
int im_tbjoin( VipsImage *top, VipsImage *bottom, VipsImage *out );
int im_extract_area( VipsImage *in, VipsImage *out,
int left, int top, int width, int height );
int im_extract_band( VipsImage *in, VipsImage *out, int band );
int im_extract_bands( VipsImage *in, VipsImage *out, int band, int nbands );
int im_extract_areabands( VipsImage *in, VipsImage *out,
int left, int top, int width, int height, int band, int nbands );
int im_replicate( VipsImage *in, VipsImage *out, int across, int down );
int im_clip2fmt( VipsImage *in, VipsImage *out, VipsBandFormat fmt );
int im_bandjoin( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_gbandjoin( VipsImage **in, VipsImage *out, int n );
/* ruby-vips uses this
*/
#define vips_class_map_concrete_all vips_class_map_all