finish unaryconst, move relational to it

This commit is contained in:
John Cupitt 2011-11-11 21:54:45 +00:00
parent d9e2920cf8
commit 827e5311c1
28 changed files with 226 additions and 1070 deletions

View File

@ -9,8 +9,8 @@
im_atantra(), im_exptra(), im_exp10tra(), im_logtra(), im_log10tra(),
im_abs(), im_sign(), im_max(), im_maxpos(), im_deviate(), im_divide(),
im_multiply(), im_stats(), im_measure(), im_recomb(), im_floor(), im_ceil(),
im_rint(), im_equal(), im_notequal(), im_less(), im_lesseq(), im_more(),
im_moreeq()
im_rint(), im_equal*(), im_notequal*(), im_less*(), im_lesseq*(), im_more*(),
im_moreeq*()
redone as classes
- added argument priorites to help control arg ordering
- generate has a 'stop' param to signal successful early termination

5
TODO
View File

@ -1,6 +1,9 @@
- test _O_TEMPORARY thing on Windows
* See also: #VipsBoolean, #VipsRelationalConst.
- remainder, power move to unary const

View File

@ -30,6 +30,8 @@ libarithmetic_la_SOURCES = \
binary.h \
unary.c \
unary.h \
unaryconst.c \
unaryconst.h \
relational.c \
add.c \
linear.c \

View File

@ -67,7 +67,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -79,7 +79,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
/**

View File

@ -519,6 +519,7 @@ vips_arithmetic_operation_init( void )
extern GType vips_recomb_get_type( void );
extern GType vips_round_get_type( void );
extern GType vips_relational_get_type( void );
extern GType vips_relational_const_get_type( void );
vips_add_get_type();
vips_subtract_get_type();
@ -538,4 +539,5 @@ vips_arithmetic_operation_init( void )
vips_recomb_get_type();
vips_round_get_type();
vips_relational_get_type();
vips_relational_const_get_type();
}

View File

@ -49,7 +49,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
G_DEFINE_ABSTRACT_TYPE( VipsBinary, vips_binary, VIPS_TYPE_ARITHMETIC );

View File

@ -34,6 +34,8 @@
extern "C" {
#endif /*__cplusplus*/
#include "arithmetic.h"
#define VIPS_TYPE_BINARY (vips_binary_get_type())
#define VIPS_BINARY( obj ) \
(G_TYPE_CHECK_INSTANCE_CAST( (obj), VIPS_TYPE_BINARY, VipsBinary ))

View File

@ -71,7 +71,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
/**

View File

@ -58,7 +58,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -81,7 +81,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -66,7 +66,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -70,7 +70,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
/**

View File

@ -51,7 +51,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -68,7 +68,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
#include "unaryconst.h"
@ -305,19 +304,21 @@ typedef struct _VipsRelationalConst {
VipsOperationRelational relational;
} VipsRelationalConst;
typedef VipsUnaryClass VipsRelationalConstClass;
typedef VipsUnaryConstClass VipsRelationalConstClass;
G_DEFINE_TYPE( VipsRelationalConst,
vips_relationalconst, VIPS_TYPE_UNARY_CONST );
vips_relational_const, VIPS_TYPE_UNARY_CONST );
static int
vips_relationalconst_build( VipsObject *object )
vips_relational_const_build( VipsObject *object )
{
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( object );
VipsUnaryConst *unaryconst = (VipsUnaryConst *) object;
VipsRelationalConst *relationalconst = (VipsRelationalConst *) object;
VipsUnary *unary = (VipsUnary *) object;
VipsUnaryConst *uconst = (VipsUnaryConst *) object;
if( VIPS_OBJECT_CLASS( vips_relationalconst_parent_class )->
if( unary->in )
uconst->const_format = unary->in->BandFmt;
if( VIPS_OBJECT_CLASS( vips_relational_const_parent_class )->
build( object ) )
return( -1 );
@ -326,6 +327,7 @@ vips_relationalconst_build( VipsObject *object )
#define RLOOPC( TYPE, OP ) { \
TYPE *p = (TYPE *) in[0]; \
TYPE *c = (TYPE *) uconst->c_ready; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( b = 0; b < bands; b++, i++ ) \
@ -336,30 +338,29 @@ vips_relationalconst_build( VipsObject *object )
TYPE *p = (TYPE *) in[0]; \
\
for( i = 0, x = 0; x < width; x++ ) { \
TYPE *c = (TYPE *) uconst->c_ready; \
\
for( b = 0; b < bands; b++, i++ ) { \
out[i] = OP( p[0], p[1], c[i], 0.0) ? 255 : 0; \
out[i] = OP( p[0], p[1], c[0], c[1]) ? 255 : 0; \
\
p += 2; \
c += 2; \
} \
} \
}
/* Lintra a buffer, n set of scale/offset.
*/
static void
vips_relationalconst_buffer( VipsArithmetic *arithmetic,
vips_relational_const_buffer( VipsArithmetic *arithmetic,
PEL *out, PEL **in, int width )
{
VipsUnaryConst *unaryconst = (VipsUnaryConst *) arithmetic;
VipsRelationalConst *relationalconst = (VipsRelationalConst *)
arithmetic;
VipsUnaryConst *uconst = (VipsUnaryConst *) arithmetic;
VipsRelationalConst *rconst = (VipsRelationalConst *) arithmetic;
VipsImage *im = arithmetic->ready[0];
int bands = im->Bands;
double *c = unaryconst->c_ready;
int i, x, b;
switch( relationalconst->relational ) {
switch( rconst->relational ) {
case VIPS_OPERATION_RELATIONAL_EQUAL:
SWITCH( RLOOPC, CLOOPC, ==, CEQUAL );
break;
@ -390,7 +391,7 @@ vips_relationalconst_buffer( VipsArithmetic *arithmetic,
}
static void
vips_relationalconst_class_init( VipsRelationalConstClass *class )
vips_relational_const_class_init( VipsRelationalConstClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
@ -399,23 +400,31 @@ vips_relationalconst_class_init( VipsRelationalConstClass *class )
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "relationalconst";
object_class->nickname = "relational_const";
object_class->description =
_( "relational operations against a constant" );
object_class->build = vips_relationalconst_build;
object_class->build = vips_relational_const_build;
vips_arithmetic_set_format_table( aclass, vips_bandfmt_relational );
aclass->process_line = vips_relationalconst_buffer;
aclass->process_line = vips_relational_const_buffer;
VIPS_ARG_ENUM( class, "relational", 200,
_( "Operation" ),
_( "relational to perform" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsRelationalConst, relational ),
VIPS_TYPE_OPERATION_RELATIONAL,
VIPS_OPERATION_RELATIONAL_EQUAL );
}
static void
vips_relationalconst_init( VipsRelationalConst *relationalconst )
vips_relational_const_init( VipsRelationalConst *relational_const )
{
}
int
vips_relationalconst( VipsImage *in, VipsImage **out,
vips_relational_const( VipsImage *in, VipsImage **out,
VipsOperationRelational relational, double *c, int n, ... )
{
va_list ap;
@ -430,7 +439,7 @@ vips_relationalconst( VipsImage *in, VipsImage **out,
array[i] = c[i];
va_start( ap, n );
result = vips_call_split( "relationalconst", ap,
result = vips_call_split( "relational_const", ap,
in, out, relational, area_c );
va_end( ap );
@ -440,7 +449,7 @@ vips_relationalconst( VipsImage *in, VipsImage **out,
}
int
vips_relationalconst1( VipsImage *in, VipsImage **out,
vips_relational_const1( VipsImage *in, VipsImage **out,
VipsOperationRelational relational, double c, ... )
{
va_list ap;
@ -453,7 +462,7 @@ vips_relationalconst1( VipsImage *in, VipsImage **out,
array[0] = c;
va_start( ap, c );
result = vips_call_split( "relationalconst", ap,
result = vips_call_split( "relational_const", ap,
in, out, relational, area_c );
va_end( ap );

View File

@ -52,7 +52,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -49,7 +49,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
/**

View File

@ -74,7 +74,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
/**

View File

@ -45,7 +45,6 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "unary.h"
G_DEFINE_ABSTRACT_TYPE( VipsUnary, vips_unary, VIPS_TYPE_ARITHMETIC );

View File

@ -34,6 +34,8 @@
extern "C" {
#endif /*__cplusplus*/
#include "arithmetic.h"
#define VIPS_TYPE_UNARY (vips_unary_get_type())
#define VIPS_UNARY( obj ) \
(G_TYPE_CHECK_INSTANCE_CAST( (obj), VIPS_TYPE_UNARY, VipsUnary ))

View File

@ -1,31 +1,7 @@
/* relational.c --- various relational operations
/* an image plus a constant
*
* Modified:
* 26/7/93 JC
* - >,<,>=,<= tests now as (double) to prevent compiler warnings. Should
* split into int/float cases really for speed.
* 25/1/95 JC
* - partialized
* - updated
* 7/2/95 JC
* - oops! bug with doubles fixed
* 3/7/98 JC
* - vector versions added ... im_equal_vec(), im_lesseq_vec() etc
* - small tidies
* - should be a bit faster, lots of *q++ changed to q[x]
* 10/3/03 JC
* - reworked to remove nested #defines: a bit slower, but much smaller
* - all except _vec forms now work on complex
* 31/7/03 JC
* - oops, relational_format was broken for some combinations
* 23/9/09
* - gtkdoc
* - use new im__arith_binary*() functions
* - more meta-programming
* 23/6/10
* - oops, moreconst and moreeqconst were the same
* 4/11/11
* - redone as a class
* 11/11/11
* - from arith_binary_const
*/
/*
@ -68,262 +44,20 @@
#include <vips/vips.h>
#include "arithmetic.h"
#include "binary.h"
#include "unary.h"
#include "unaryconst.h"
/**
* VipsRelational:
* @in: input #VipsImage
* @out: output #VipsImage
* @relational: relational operation to perform
*
* Perform various relational operations on pairs of images.
*
* The output type is always uchar, with 0 for FALSE and 255 for TRUE.
*
* Less-than and greater-than for complex images compare the modulus.
*
* If the images differ in size, the smaller image is enlarged to match the
* larger by adding zero pixels along the bottom and right.
*
* If the number of bands differs, one of the images
* must have one band. In this case, an n-band image is formed from the
* one-band image by joining n copies of the one-band image together, and then
* the two n-band images are operated upon.
*
* The two input images are cast up to the smallest common type (see table
* Smallest common format in
* <link linkend="VIPS-arithmetic">arithmetic</link>).
*
* See also: #VipsBoolean, #VipsRelationalConst.
*/
typedef struct _VipsRelational {
VipsBinary parent_instance;
VipsOperationRelational relational;
} VipsRelational;
typedef VipsBinaryClass VipsRelationalClass;
G_DEFINE_TYPE( VipsRelational, vips_relational, VIPS_TYPE_BINARY );
static int
vips_relational_build( VipsObject *object )
{
VipsRelational *relational = (VipsRelational *) object;
VipsArithmetic *arithmetic = (VipsArithmetic *) object;
if( relational->relational == VIPS_OPERATION_RELATIONAL_MORE ) {
relational->relational = VIPS_OPERATION_RELATIONAL_LESS;
VIPS_SWAP( VipsImage *,
arithmetic->ready[0], arithmetic->ready[1] );
}
if( relational->relational == VIPS_OPERATION_RELATIONAL_MOREEQ ) {
relational->relational = VIPS_OPERATION_RELATIONAL_LESSEQ;
VIPS_SWAP( VipsImage *,
arithmetic->ready[0], arithmetic->ready[1] );
}
if( VIPS_OBJECT_CLASS( vips_relational_parent_class )->build( object ) )
return( -1 );
return( 0 );
}
#define RLOOP( TYPE, ROP ) { \
TYPE *left = (TYPE *) in[0]; \
TYPE *right = (TYPE *) in[1]; \
PEL *q = (PEL *) out; \
\
for( x = 0; x < sz; x++ ) \
q[x] = (left[x] ROP right[x]) ? 255 : 0; \
}
#define CLOOP( TYPE, COP ) { \
TYPE *left = (TYPE *) in[0]; \
TYPE *right = (TYPE *) in[1]; \
PEL *q = (PEL *) out; \
\
for( x = 0; x < sz; x++ ) { \
q[x] = COP( left[0], left[1], right[0], right[1]) ? 255 : 0; \
\
left += 2; \
right += 2; \
} \
}
#define SWITCH( R, C, ROP, COP ) \
switch( vips_image_get_format( im ) ) { \
case VIPS_FORMAT_UCHAR: R( unsigned char, ROP ); break; \
case VIPS_FORMAT_CHAR: R( signed char, ROP ); break; \
case VIPS_FORMAT_USHORT: R( unsigned short, ROP ); break; \
case VIPS_FORMAT_SHORT: R( signed short, ROP ); break; \
case VIPS_FORMAT_UINT: R( unsigned int, ROP ); break; \
case VIPS_FORMAT_INT: R( signed int, ROP ); break; \
case VIPS_FORMAT_FLOAT: R( float, ROP ); break; \
case VIPS_FORMAT_DOUBLE: R( double, ROP ); break;\
case VIPS_FORMAT_COMPLEX: C( float, COP ); break; \
case VIPS_FORMAT_DPCOMPLEX: C( double, COP ); break;\
\
default: \
g_assert( 0 ); \
}
#define CEQUAL( x1, y1, x2, y2 ) (x1 == y1 && x2 == y2)
#define CNOTEQUAL( x1, y1, x2, y2 ) (x1 != y1 || x2 != y2)
#define CLESS( x1, y1, x2, y2 ) (x1 * x1 + y1 * y1 < x2 * x2 + y2 * y2)
#define CLESSEQ( x1, y1, x2, y2 ) (x1 * x1 + y1 * y1 <= x2 * x2 + y2 * y2)
#define CMORE( x1, y1, x2, y2 ) (x1 * x1 + y1 * y1 > x2 * x2 + y2 * y2)
#define CMOREEQ( x1, y1, x2, y2 ) (x1 * x1 + y1 * y1 >= x2 * x2 + y2 * y2)
static void
vips_relational_buffer( VipsArithmetic *arithmetic,
PEL *out, PEL **in, int width )
{
VipsRelational *relational = (VipsRelational *) arithmetic;
VipsImage *im = arithmetic->ready[0];
const int sz = width * vips_image_get_bands( im );
int x;
switch( relational->relational ) {
case VIPS_OPERATION_RELATIONAL_EQUAL:
SWITCH( RLOOP, CLOOP, ==, CEQUAL );
break;
case VIPS_OPERATION_RELATIONAL_NOTEQUAL:
SWITCH( RLOOP, CLOOP, !=, CNOTEQUAL );
break;
case VIPS_OPERATION_RELATIONAL_LESS:
SWITCH( RLOOP, CLOOP, <, CLESS );
break;
case VIPS_OPERATION_RELATIONAL_LESSEQ:
SWITCH( RLOOP, CLOOP, <=, CLESSEQ );
break;
default:
g_assert( 0 );
}
}
/* Save a bit of typing.
*/
#define UC VIPS_FORMAT_UCHAR
#define C VIPS_FORMAT_CHAR
#define US VIPS_FORMAT_USHORT
#define S VIPS_FORMAT_SHORT
#define UI VIPS_FORMAT_UINT
#define I VIPS_FORMAT_INT
#define F VIPS_FORMAT_FLOAT
#define X VIPS_FORMAT_COMPLEX
#define D VIPS_FORMAT_DOUBLE
#define DX VIPS_FORMAT_DPCOMPLEX
static const VipsBandFormat vips_bandfmt_relational[10] = {
/* UC C US S UI I F X D DX */
UC, UC, UC, UC, UC, UC, UC, UC, UC, UC
};
static void
vips_relational_class_init( VipsRelationalClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsArithmeticClass *aclass = VIPS_ARITHMETIC_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "relational";
object_class->description =
_( "a relational operation on a pair of images" );
object_class->build = vips_relational_build;
vips_arithmetic_set_format_table( aclass, vips_bandfmt_relational );
aclass->process_line = vips_relational_buffer;
VIPS_ARG_ENUM( class, "relational", 200,
_( "Operation" ),
_( "relational to perform" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsRelational, relational ),
VIPS_TYPE_OPERATION_RELATIONAL,
VIPS_OPERATION_RELATIONAL_EQUAL );
}
static void
vips_relational_init( VipsRelational *relational )
{
}
int
vips_relational( VipsImage *left, VipsImage *right, VipsImage **out,
VipsOperationRelational relational, ... )
{
va_list ap;
int result;
va_start( ap, relational );
result = vips_call_split( "relational", ap, left, right, out,
relational );
va_end( ap );
return( result );
}
/**
* VipsRelationalConst:
* @in: input image
* @out: output image
* @a: array of constants
* @relational: relational operation to perform
*
* Perform various relational operations on an image against a constant.
*
* The output type is always uchar, with 0 for FALSE and 255 for TRUE.
*
* If the array of constants has just one element, that constant is used for
* all image bands. If the array has more than one element and they have
* the same number of elements as there are bands in the image, then
* one array element is used for each band. If the arrays have more than one
* element and the image only has a single band, the result is a many-band
* image where each band corresponds to one array element.
*
* See also: #VipsBoolean, #VipsRelational.
*/
typedef struct _VipsRelationalConst {
VipsUnary parent_instance;
/* Our constants.
*/
VipsArea *c;
/* Our constants expanded to match arith->ready in size.
*/
int n;
double *c_ready;
} VipsRelationalConst;
typedef VipsUnaryClass VipsRelationalConstClass;
G_DEFINE_TYPE( VipsRelationalConst, vips_relationalconst, VIPS_TYPE_UNARY );
G_DEFINE_ABSTRACT_TYPE( VipsUnaryConst, vips_unary_const, VIPS_TYPE_UNARY );
/* Cast a vector of double to a vector of TYPE, clipping to a range.
*/
#define CAST_CLIP( TYPE, N, X ) { \
TYPE *tq = (TYPE *) q; \
\
for( i = 0; i < n; i++ ) \
tq[i] = (TYPE) IM_CLIP( N, p[i], X ); \
for( i = 0; i < m; i++ ) { \
double v = p[VIPS_MIN( n - 1, i )]; \
\
tq[i] = (TYPE) VIPS_CLIP( N, v, X ); \
} \
}
/* Cast a vector of double to a vector of TYPE.
@ -331,8 +65,8 @@ G_DEFINE_TYPE( VipsRelationalConst, vips_relationalconst, VIPS_TYPE_UNARY );
#define CAST( TYPE ) { \
TYPE *tq = (TYPE *) q; \
\
for( i = 0; i < n; i++ ) \
tq[i] = (TYPE) p[i]; \
for( i = 0; i < m; i++ ) \
tq[i] = (TYPE) p[VIPS_MIN( n - 1, i )]; \
}
/* Cast a vector of double to a complex vector of TYPE.
@ -340,62 +74,64 @@ G_DEFINE_TYPE( VipsRelationalConst, vips_relationalconst, VIPS_TYPE_UNARY );
#define CASTC( TYPE ) { \
TYPE *tq = (TYPE *) q; \
\
for( i = 0; i < n; i++ ) { \
tq[0] = (TYPE) p[i]; \
for( i = 0; i < m; i++ ) { \
tq[0] = (TYPE) p[VIPS_MIN( n - 1, i )]; \
tq[1] = 0; \
\
tq += 2; \
} \
}
/* Cast a vector of double to a passed format.
/* Cast a n-band vector of double to a m-band vector in another format.
*/
static PEL *
make_pixel( IMAGE *out, VipsBandFmt fmt, int n, double *p )
make_pixel( VipsObject *obj, int m, VipsBandFmt fmt, int n, double *p )
{
PEL *q;
int i;
if( !(q = IM_ARRAY( out, n * (im_bits_of_fmt( fmt ) >> 3), PEL )) )
if( !(q = VIPS_ARRAY( obj,
m * vips__image_sizeof_bandformat[fmt], PEL )) )
return( NULL );
switch( fmt ) {
case IM_BANDFMT_CHAR:
case VIPS_FORMAT_CHAR:
CAST_CLIP( signed char, SCHAR_MIN, SCHAR_MAX );
break;
case IM_BANDFMT_UCHAR:
case VIPS_FORMAT_UCHAR:
CAST_CLIP( unsigned char, 0, UCHAR_MAX );
break;
case IM_BANDFMT_SHORT:
case VIPS_FORMAT_SHORT:
CAST_CLIP( signed short, SCHAR_MIN, SCHAR_MAX );
break;
case IM_BANDFMT_USHORT:
case VIPS_FORMAT_USHORT:
CAST_CLIP( unsigned short, 0, USHRT_MAX );
break;
case IM_BANDFMT_INT:
case VIPS_FORMAT_INT:
CAST_CLIP( signed int, INT_MIN, INT_MAX );
break;
case IM_BANDFMT_UINT:
case VIPS_FORMAT_UINT:
CAST_CLIP( unsigned int, 0, UINT_MAX );
break;
case IM_BANDFMT_FLOAT:
case VIPS_FORMAT_FLOAT:
CAST( float );
break;
case IM_BANDFMT_DOUBLE:
case VIPS_FORMAT_DOUBLE:
CAST( double );
break;
case IM_BANDFMT_COMPLEX:
case VIPS_FORMAT_COMPLEX:
CASTC( float );
break;
case IM_BANDFMT_DPCOMPLEX:
case VIPS_FORMAT_DPCOMPLEX:
CASTC( double );
break;
@ -407,45 +143,28 @@ make_pixel( IMAGE *out, VipsBandFmt fmt, int n, double *p )
}
static int
vips_relationalconst_build( VipsObject *object )
vips_unary_const_build( VipsObject *object )
{
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( object );
VipsUnary *unary = (VipsUnary *) object;
VipsRelationalConst *relationalconst = (VipsRelationalConst *) object;
int i;
VipsUnaryConst *uconst = (VipsUnaryConst *) object;
/* If we have a three-element vector we need to bandup the image to
* match.
*/
relationalconst->n = 1;
if( relationalconst->c )
relationalconst->n = relationalconst->c->n;
uconst->n = 1;
if( uconst->c )
uconst->n = VIPS_MAX( uconst->n, uconst->c->n );
if( unary->in )
relationalconst->n = VIPS_MAX( relationalconst->n,
unary->in->Bands );
arithmetic->base_bands = relationalconst->n;
uconst->n = VIPS_MAX( uconst->n, unary->in->Bands );
arithmetic->base_bands = uconst->n;
if( unary->in && relational->c ) {
if( unary->in && uconst->c ) {
if( vips_check_vector( "VipsRelationalConst",
relationalconst->c->n, unary->in ) )
uconst->c->n, unary->in ) )
return( -1 );
}
/* Make up-banded versions of our constants.
*/
if( relationalconst->c ) {
double *ary = (double *) relationalconst->c->data;
relationalconst->c_ready = g_new( double, relationalconst->n );
for( i = 0; i < relationalconst->n; i++ ) {
int j = VIPS_MIN( i, relationalconst->c->n - 1 );
relationalconst->c_ready[i] = ary[j];
}
}
/* Some operations need the vector in the input type (eg.
* im_equal_vec() where the output type is always uchar and is useless
* for comparisons), some need it in the output type (eg.
@ -456,164 +175,41 @@ vips_relationalconst_build( VipsObject *object )
*
* Therefore pass in the desired vector type as a param.
*/
if( !(vector = make_pixel( out, vfmt, n, c )) )
return( -1 );
if( VIPS_OBJECT_CLASS( vips_relationalconst_parent_class )->
if( uconst->c )
uconst->c_ready = make_pixel( (VipsObject *) uconst,
uconst->n, uconst->const_format,
uconst->c->n, (double *) uconst->c->data );
if( VIPS_OBJECT_CLASS( vips_unary_const_parent_class )->
build( object ) )
return( -1 );
return( 0 );
}
#define RLOOPC( TYPE, OP ) { \
TYPE *p = (TYPE *) in[0]; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( b = 0; b < bands; b++, i++ ) \
q[i] = (p[i] OP c[b]) ? 255 : 0; \
}
#define CLOOPC( TYPE, OP ) { \
TYPE *p = (TYPE *) in[0]; \
\
for( i = 0, x = 0; x < width; x++ ) { \
for( b = 0; b < bands; b++, i++ ) { \
q[i] = COP( p[0], p[1], c[i], 0.0) ? 255 : 0; \
\
p += 2; \
} \
} \
}
/* Lintra a buffer, n set of scale/offset.
*/
static void
vips_relationalconst_buffer( VipsArithmetic *arithmetic,
PEL *out, PEL **in, int width )
{
VipsRelationalConst *relationalconst = (VipsRelationalConst *)
arithmetic;
VipsImage *im = arithmetic->ready[0];
int nb = im->Bands;
double *c = relationalconst->c_ready;
int i, x, k;
switch( relationalconst->relational ) {
case VIPS_OPERATION_RELATIONAL_EQUAL:
SWITCH( RLOOPC, CLOOPC, ==, CEQUAL );
break;
case VIPS_OPERATION_RELATIONAL_NOTEQUAL:
SWITCH( RLOOPC, CLOOPC, !=, CNOTEQUAL );
break;
case VIPS_OPERATION_RELATIONAL_LESS:
SWITCH( RLOOPC, CLOOPC, <, CLESS );
breakC;
case VIPS_OPERATION_RELATIONAL_LESSEQ:
SWITCH( RLOOPC, CLOOPC, <=, CLESSEQ );
break;
case VIPS_OPERATION_RELATIONAL_MORE:
SWITCH( RLOOPC, CLOOPC, >, CMORE );
breakC;
case VIPS_OPERATION_RELATIONAL_MOREEQ:
SWITCH( RLOOPC, CLOOPC, >=, CMOREEQ );
break;
default:
g_assert( 0 );
}
}
static void
vips_relationalconst_class_init( VipsRelationalConstClass *class )
vips_unary_const_class_init( VipsUnaryConstClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsArithmeticClass *aclass = VIPS_ARITHMETIC_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "relationalconst";
object_class->description =
_( "relational operations against a constant" );
object_class->build = vips_relationalconst_build;
object_class->nickname = "unary_const";
object_class->description = _( "unary operations with a constant" );
object_class->build = vips_unary_const_build;
vips_arithmetic_set_format_table( aclass, vips_bandfmt_relational );
aclass->process_line = vips_relationalconst_buffer;
VIPS_ARG_ENUM( class, "relational", 200,
_( "Operation" ),
_( "relational operation to perform" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsRelational, relational ),
VIPS_TYPE_OPERATION_RELATIONAL,
VIPS_OPERATION_RELATIONAL_EQUAL );
VIPS_ARG_BOXED( class, "c", 210,
VIPS_ARG_BOXED( class, "c", 200,
_( "c" ),
_( "Array of constants" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsRelationalConst, c ),
G_STRUCT_OFFSET( VipsUnaryConst, c ),
VIPS_TYPE_ARRAY_DOUBLE );
}
static void
vips_relationalconst_init( VipsRelationalConst *relationalconst )
vips_unary_const_init( VipsUnaryConst *uconst )
{
}
int
vips_relationalconst( VipsImage *in, VipsImage **out,
VipsOperationRelational relational, double *c, int n, ... )
{
va_list ap;
VipsArea *area_c;
double *array;
int result;
int i;
area_c = vips_area_new_array( G_TYPE_DOUBLE, sizeof( double ), n );
array = (double *) area_c->data;
for( i = 0; i < n; i++ )
array[i] = a[i];
va_start( ap, n );
result = vips_call_split( "relationalconst", ap,
in, out, relational, area_c );
va_end( ap );
vips_area_unref( area_c );
return( result );
}
int
vips_relationalconst1( VipsImage *in, VipsImage **out,
VipsOperationRelational relational, double c, ... )
{
va_list ap;
VipsArea *area_c;
double *array;
int result;
area_c = vips_area_new_array( G_TYPE_DOUBLE, sizeof( double ), 1 );
array = (double *) area_c->data;
array[0] = c;
va_start( ap, b );
result = vips_call_split( "relationalconst", ap,
in, out, relational, area_c );
va_end( ap );
vips_area_unref( area_c );
return( result );
}

View File

@ -36,7 +36,7 @@ extern "C" {
#include "unary.h"
#define VIPS_TYPE_UNARY_CONST (vips_unaryconst_get_type())
#define VIPS_TYPE_UNARY_CONST (vips_unary_const_get_type())
#define VIPS_UNARY_CONST( obj ) \
(G_TYPE_CHECK_INSTANCE_CAST( (obj), \
VIPS_TYPE_UNARY_CONST, VipsUnaryConst ))
@ -58,26 +58,25 @@ typedef struct _VipsUnaryConst {
*/
VipsArea *c;
/* Our constants expanded to match arith->ready in size.
/* The format the constant should be cast to. Subclasses set this
* ready for unaryconst's build method.
*/
VipsBandFmt const_format;
/* Our constant expanded to match arith->ready in size and
* const_format in type.
*/
int n;
double *c_ready;
/* Our constants further cast to const_format.
*/
PEL *c_type;
PEL *c_ready;
} VipsUnaryConst;
typedef struct _VipsUnaryConstClass {
VipsUnaryClass parent_class;
/* Cast the const to this format for processing.
*/
VipsBandFormat const_format;
} VipsUnaryConstClass;
GType vips_unaryconst_get_type( void );
GType vips_unary_const_get_type( void );
#ifdef __cplusplus
}

View File

@ -1740,3 +1740,100 @@ im_moreeq( IMAGE *in1, IMAGE *in2, IMAGE *out )
return( vips__relational( in1, in2, out,
VIPS_OPERATION_RELATIONAL_MOREEQ ) );
}
static int
vips__relational_vec( IMAGE *in, IMAGE *out,
VipsOperationRelational relational, double *c, int n )
{
VipsImage *t;
if( vips_relational_const( in, &t, relational, c, n,
NULL ) )
return( -1 );
if( vips_image_write( t, out ) ) {
g_object_unref( t );
return( -1 );
}
g_object_unref( t );
return( 0 );
}
int
im_equal_vec( VipsImage *in, VipsImage *out, int n, double *c )
{
return( vips__relational_vec( in, out,
VIPS_OPERATION_RELATIONAL_EQUAL, c, n ) );
}
int
im_notequal_vec( VipsImage *in, VipsImage *out, int n, double *c )
{
return( vips__relational_vec( in, out,
VIPS_OPERATION_RELATIONAL_NOTEQUAL, c, n ) );
}
int
im_less_vec( VipsImage *in, VipsImage *out, int n, double *c )
{
return( vips__relational_vec( in, out,
VIPS_OPERATION_RELATIONAL_LESS, c, n ) );
}
int
im_lesseq_vec( VipsImage *in, VipsImage *out, int n, double *c )
{
return( vips__relational_vec( in, out,
VIPS_OPERATION_RELATIONAL_LESSEQ, c, n ) );
}
int
im_more_vec( VipsImage *in, VipsImage *out, int n, double *c )
{
return( vips__relational_vec( in, out,
VIPS_OPERATION_RELATIONAL_MORE, c, n ) );
}
int
im_moreeq_vec( VipsImage *in, VipsImage *out, int n, double *c )
{
return( vips__relational_vec( in, out,
VIPS_OPERATION_RELATIONAL_MOREEQ, c, n ) );
}
int
im_equalconst( IMAGE *in, IMAGE *out, double c )
{
return( im_equal_vec( in, out, 1, &c ) );
}
int
im_notequalconst( IMAGE *in, IMAGE *out, double c )
{
return( im_notequal_vec( in, out, 1, &c ) );
}
int
im_lessconst( IMAGE *in, IMAGE *out, double c )
{
return( im_less_vec( in, out, 1, &c ) );
}
int
im_lesseqconst( IMAGE *in, IMAGE *out, double c )
{
return( im_lesseq_vec( in, out, 1, &c ) );
}
int
im_moreconst( IMAGE *in, IMAGE *out, double c )
{
return( im_more_vec( in, out, 1, &c ) );
}
int
im_moreeqconst( IMAGE *in, IMAGE *out, double c )
{
return( im_moreeq_vec( in, out, 1, &c ) );
}

View File

@ -143,6 +143,12 @@ int vips_round( VipsImage *in, VipsImage **out, VipsOperationRound round, ... )
int vips_relational( VipsImage *left, VipsImage *right, VipsImage **out,
VipsOperationRelational relational, ... )
__attribute__((sentinel));
int vips_relational_const( VipsImage *in, VipsImage **out,
VipsOperationRelational relational, double *c, int n, ... )
__attribute__((sentinel));
int vips_relational_const1( VipsImage *in, VipsImage **out,
VipsOperationRelational relational, double c, ... )
__attribute__((sentinel));

View File

@ -37,19 +37,6 @@
extern "C" {
#endif /*__cplusplus*/
int im_equal_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_notequal_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_less_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_lesseq_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_more_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_moreeq_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_equalconst( VipsImage *in, VipsImage *out, double c );
int im_notequalconst( VipsImage *in, VipsImage *out, double c );
int im_lessconst( VipsImage *in, VipsImage *out, double c );
int im_lesseqconst( VipsImage *in, VipsImage *out, double c );
int im_moreconst( VipsImage *in, VipsImage *out, double c );
int im_moreeqconst( VipsImage *in, VipsImage *out, double c );
int im_ifthenelse( VipsImage *c, VipsImage *a, VipsImage *b, VipsImage *out );
int im_blend( VipsImage *c, VipsImage *a, VipsImage *b, VipsImage *out );

View File

@ -564,6 +564,19 @@ int im_lesseq( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_more( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_moreeq( VipsImage *in1, VipsImage *in2, VipsImage *out );
int im_equal_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_notequal_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_less_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_lesseq_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_more_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_moreeq_vec( VipsImage *in, VipsImage *out, int n, double *c );
int im_equalconst( VipsImage *in, VipsImage *out, double c );
int im_notequalconst( VipsImage *in, VipsImage *out, double c );
int im_lessconst( VipsImage *in, VipsImage *out, double c );
int im_lesseqconst( VipsImage *in, VipsImage *out, double c );
int im_moreconst( VipsImage *in, VipsImage *out, double c );
int im_moreeqconst( VipsImage *in, VipsImage *out, double c );
int im_copy( VipsImage *in, VipsImage *out );
int im_copy_set( VipsImage *in, VipsImage *out,
VipsInterpretation interpretation,

View File

@ -3,7 +3,6 @@ noinst_LTLIBRARIES = librelational.la
librelational_la_SOURCES = \
im_ifthenelse.c \
im_blend.c \
relational.c \
relational_dispatch.c
INCLUDES = -I${top_srcdir}/libvips/include @VIPS_CFLAGS@ @VIPS_INCLUDES@

View File

@ -1,548 +0,0 @@
/* relational.c --- various relational operation
*
* Modified:
* 26/7/93 JC
* - >,<,>=,<= tests now as (double) to prevent compiler warnings. Should
* split into int/float cases really for speed.
* 25/1/95 JC
* - partialized
* - updated
* 7/2/95 JC
* - oops! bug with doubles fixed
* 3/7/98 JC
* - vector versions added ... im_equal_vec(), im_lesseq_vec() etc
* - small tidies
* - should be a bit faster, lots of *q++ changed to q[x]
* 10/3/03 JC
* - reworked to remove nested #defines: a bit slower, but much smaller
* - all except _vec forms now work on complex
* 31/7/03 JC
* - oops, relational_format was broken for some combinations
* 23/9/09
* - gtkdoc
* - use new im__arith_binary*() functions
* - more meta-programming
* 23/6/10
* - oops, moreconst and moreeqconst were the same
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/internal.h>
#define UC IM_BANDFMT_UCHAR
/* Type conversions for relational: everything goes to uchar.
*/
static int bandfmt_relational[10] = {
/* UC C US S UI I F X D DX */
UC, UC, UC, UC, UC, UC, UC, UC, UC, UC,
};
#define EQUAL_REAL( Q, A, B ) { \
if( (A) == (B) ) \
Q = 255; \
else \
Q = 0; \
}
#define EQUAL_COMPLEX( Q, A, B ) { \
if( (A)[0] == (B)[0] && (A)[1] == (B)[1] ) \
Q = 255; \
else \
Q = 0; \
}
#define NOTEQUAL_REAL( Q, A, B ) { \
if( (A) != (B) ) \
Q = 255; \
else \
Q = 0; \
}
#define NOTEQUAL_COMPLEX( Q, A, B ) { \
if( (A)[0] != (B)[0] || (A)[1] != (B)[1] ) \
Q = 255; \
else \
Q = 0; \
}
#define LESS_REAL( Q, A, B ) { \
if( (A) < (B) ) \
Q = 255; \
else \
Q = 0; \
}
#define LESS_COMPLEX( Q, A, B ) { \
double m1 = (A)[0] * (A)[0] + (A)[1] * (A)[1]; \
double m2 = (B)[0] * (B)[0] + (B)[1] * (B)[1]; \
\
if( m1 < m2 ) \
Q = 255; \
else \
Q = 0; \
}
#define LESSEQ_REAL( Q, A, B ) { \
if( (A) <= (B) ) \
Q = 255; \
else \
Q = 0; \
}
#define LESSEQ_COMPLEX( Q, A, B ) { \
double m1 = (A)[0] * (A)[0] + (A)[1] * (A)[1]; \
double m2 = (B)[0] * (B)[0] + (B)[1] * (B)[1]; \
\
if( m1 <= m2 ) \
Q = 255; \
else \
Q = 0; \
}
#define RCONST1( IN, FUN ) { \
IN *tp = (IN *) p; \
IN tc = *((IN *) vector); \
\
for( i = 0; i < ne; i++ ) \
FUN( q[i], tp[i], tc ); \
}
#define CCONST1( IN, FUN ) { \
IN *tp = (IN *) p; \
IN *tc = ((IN *) vector); \
\
for( i = 0; i < ne; i++ ) { \
FUN( q[i], tp, tc ); \
\
tp += 2; \
} \
}
#define CONST1_BUFFER( NAME, RFUN, CFUN ) \
static void \
NAME ## 1_buffer( PEL *p, PEL *q, int n, PEL *vector, IMAGE *im ) \
{ \
const int ne = n * im->Bands; \
\
int i; \
\
switch( im->BandFmt ) { \
case IM_BANDFMT_CHAR: RCONST1( signed char, RFUN ); break; \
case IM_BANDFMT_UCHAR: RCONST1( unsigned char, RFUN ); break; \
case IM_BANDFMT_SHORT: RCONST1( signed short, RFUN ); break; \
case IM_BANDFMT_USHORT: RCONST1( unsigned short, RFUN ); break; \
case IM_BANDFMT_INT: RCONST1( signed int, RFUN ); break; \
case IM_BANDFMT_UINT: RCONST1( unsigned int, RFUN ); break; \
case IM_BANDFMT_FLOAT: RCONST1( float, RFUN ); break; \
case IM_BANDFMT_COMPLEX: CCONST1( float, CFUN ); break; \
case IM_BANDFMT_DOUBLE: RCONST1( double, RFUN ); break; \
case IM_BANDFMT_DPCOMPLEX: CCONST1( double, CFUN ); break; \
\
default: \
g_assert( 0 ); \
} \
}
#define RCONSTN( IN, FUN ) { \
IN *tp = (IN *) p; \
IN *tc = (IN *) vector; \
\
for( i = 0, x = 0; x < n; x++ ) \
for( b = 0; b < bands; b++, i++ ) \
FUN( q[i], tp[i], tc[b] ); \
}
#define CCONSTN( IN, FUN ) { \
IN *tp = (IN *) p; \
\
for( i = 0, x = 0; x < n; x++ ) { \
IN *tc = ((IN *) vector); \
\
for( b = 0; b < bands; b++, i++ ) { \
FUN( q[i], tp, tc ); \
\
tp += 2; \
tc += 2; \
} \
} \
}
#define CONSTN_BUFFER( NAME, RFUN, CFUN ) \
static void \
NAME ## n_buffer( PEL *p, PEL *q, int n, PEL *vector, IMAGE *im ) \
{ \
const int bands = im->Bands; \
\
int i, x, b; \
\
switch( im->BandFmt ) { \
case IM_BANDFMT_CHAR: RCONSTN( signed char, RFUN ); break; \
case IM_BANDFMT_UCHAR: RCONSTN( unsigned char, RFUN ); break; \
case IM_BANDFMT_SHORT: RCONSTN( signed short, RFUN ); break; \
case IM_BANDFMT_USHORT: RCONSTN( unsigned short, RFUN ); break; \
case IM_BANDFMT_INT: RCONSTN( signed int, RFUN ); break; \
case IM_BANDFMT_UINT: RCONSTN( unsigned int, RFUN ); break; \
case IM_BANDFMT_FLOAT: RCONSTN( float, RFUN ); break; \
case IM_BANDFMT_COMPLEX: CCONSTN( float, CFUN ); break; \
case IM_BANDFMT_DOUBLE: RCONSTN( double, RFUN ); break; \
case IM_BANDFMT_DPCOMPLEX: CCONSTN( double, CFUN ); break; \
\
default: \
g_assert( 0 ); \
} \
}
CONST1_BUFFER( EQUAL, EQUAL_REAL, EQUAL_COMPLEX )
CONSTN_BUFFER( EQUAL, EQUAL_REAL, EQUAL_COMPLEX )
/**
* im_equal_vec:
* @in: input #IMAGE
* @out: output #IMAGE
* @n: array length
* @c: array of constants
*
* This operation calculates @in == @c (image element equals constant array
* @c) and writes the result to @out.
*
* See also: im_equal(), im_equalconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_equal_vec( IMAGE *in, IMAGE *out, int n, double *c )
{
return( im__arith_binary_const( "im_equal",
in, out, n, c, in->BandFmt,
bandfmt_relational,
(im_wrapone_fn) EQUAL1_buffer,
(im_wrapone_fn) EQUALn_buffer ) );
}
CONST1_BUFFER( NOTEQUAL, NOTEQUAL_REAL, NOTEQUAL_COMPLEX )
CONSTN_BUFFER( NOTEQUAL, NOTEQUAL_REAL, NOTEQUAL_COMPLEX )
/**
* im_notequal_vec:
* @in: input #IMAGE
* @out: output #IMAGE
* @n: array length
* @c: array of constants
*
* This operation calculates @in != @c (image element is not equal to constant
* array @c) and writes the result to @out.
*
* See also: im_equal(), im_equal_vec().
*
* Returns: 0 on success, -1 on error
*/
int
im_notequal_vec( IMAGE *in, IMAGE *out, int n, double *c )
{
return( im__arith_binary_const( "im_notequal",
in, out, n, c, in->BandFmt,
bandfmt_relational,
(im_wrapone_fn) NOTEQUAL1_buffer,
(im_wrapone_fn) NOTEQUALn_buffer ) );
}
CONST1_BUFFER( LESS, LESS_REAL, LESS_COMPLEX )
CONSTN_BUFFER( LESS, LESS_REAL, LESS_COMPLEX )
/**
* im_less_vec:
* @in: input #IMAGE
* @out: output #IMAGE
* @n: array length
* @c: array of constants
*
* This operation calculates @in < @c (image element is less than constant
* array @c) and writes the result to @out.
*
* See also: im_less(), im_lessconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_less_vec( IMAGE *in, IMAGE *out, int n, double *c )
{
return( im__arith_binary_const( "im_less",
in, out, n, c, in->BandFmt,
bandfmt_relational,
(im_wrapone_fn) LESS1_buffer,
(im_wrapone_fn) LESSn_buffer ) );
}
CONST1_BUFFER( LESSEQ, LESSEQ_REAL, LESSEQ_COMPLEX )
CONSTN_BUFFER( LESSEQ, LESSEQ_REAL, LESSEQ_COMPLEX )
/**
* im_lesseq_vec:
* @in: input #IMAGE
* @out: output #IMAGE
* @n: array length
* @c: array of constants
*
* This operation calculates @in <= @c (image element is less than or equal to
* constant array @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_lesseq_vec( IMAGE *in, IMAGE *out, int n, double *c )
{
return( im__arith_binary_const( "im_lesseq",
in, out, n, c, in->BandFmt,
bandfmt_relational,
(im_wrapone_fn) LESSEQ1_buffer,
(im_wrapone_fn) LESSEQn_buffer ) );
}
#define MORE_REAL( Q, A, B ) { \
if( (A) > (B) ) \
Q = 255; \
else \
Q = 0; \
}
#define MORE_COMPLEX( Q, A, B ) { \
double m1 = (A)[0] * (A)[0] + (A)[1] * (A)[1]; \
double m2 = (B)[0] * (B)[0] + (B)[1] * (B)[1]; \
\
if( m1 > m2 ) \
Q = 255; \
else \
Q = 0; \
}
CONST1_BUFFER( MORE, MORE_REAL, MORE_COMPLEX )
CONSTN_BUFFER( MORE, MORE_REAL, MORE_COMPLEX )
/**
* im_more_vec:
* @in: input #IMAGE
* @out: output #IMAGE
* @n: array length
* @c: array of constants
*
* This operation calculates @in > @c (image element is greater than
* constant array @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_more_vec( IMAGE *in, IMAGE *out, int n, double *c )
{
return( im__arith_binary_const( "im_more",
in, out, n, c, in->BandFmt,
bandfmt_relational,
(im_wrapone_fn) MORE1_buffer,
(im_wrapone_fn) MOREn_buffer ) );
}
#define MOREEQ_REAL( Q, A, B ) { \
if( (A) >= (B) ) \
Q = 255; \
else \
Q = 0; \
}
#define MOREEQ_COMPLEX( Q, A, B ) { \
double m1 = (A)[0] * (A)[0] + (A)[1] * (A)[1]; \
double m2 = (B)[0] * (B)[0] + (B)[1] * (B)[1]; \
\
if( m1 >= m2 ) \
Q = 255; \
else \
Q = 0; \
}
CONST1_BUFFER( MOREEQ, MOREEQ_REAL, MOREEQ_COMPLEX )
CONSTN_BUFFER( MOREEQ, MOREEQ_REAL, MOREEQ_COMPLEX )
/**
* im_moreeq_vec:
* @in: input #IMAGE
* @out: output #IMAGE
* @n: array length
* @c: array of constants
*
* This operation calculates @in >= @c (image element is greater than or
* equal to
* constant array @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_moreeq_vec( IMAGE *in, IMAGE *out, int n, double *c )
{
return( im__arith_binary_const( "im_moreeq",
in, out, n, c, in->BandFmt,
bandfmt_relational,
(im_wrapone_fn) MOREEQ1_buffer,
(im_wrapone_fn) MOREEQn_buffer ) );
}
/**
* im_equalconst:
* @in: input #IMAGE
* @out: output #IMAGE
* @c: constant
*
* This operation calculates @in == @c (image element is
* equal to constant @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_equalconst( IMAGE *in, IMAGE *out, double c )
{
return( im_equal_vec( in, out, 1, &c ) );
}
/**
* im_notequalconst:
* @in: input #IMAGE
* @out: output #IMAGE
* @c: constant
*
* This operation calculates @in != @c (image element is not equal to
* constant @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_notequalconst( IMAGE *in, IMAGE *out, double c )
{
return( im_notequal_vec( in, out, 1, &c ) );
}
/**
* im_lessconst:
* @in: input #IMAGE
* @out: output #IMAGE
* @c: constant
*
* This operation calculates @in < @c (image element is less than
* constant @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_lessconst( IMAGE *in, IMAGE *out, double c )
{
return( im_less_vec( in, out, 1, &c ) );
}
/**
* im_lesseqconst:
* @in: input #IMAGE
* @out: output #IMAGE
* @c: constant
*
* This operation calculates @in = @c (image element is less than
* or equal to
* constant @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_lesseqconst( IMAGE *in, IMAGE *out, double c )
{
return( im_lesseq_vec( in, out, 1, &c ) );
}
/**
* im_moreconst:
* @in: input #IMAGE
* @out: output #IMAGE
* @c: constant
*
* This operation calculates @in = @c (image element is more than
* constant @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_moreconst( IMAGE *in, IMAGE *out, double c )
{
return( im_more_vec( in, out, 1, &c ) );
}
/**
* im_moreeqconst:
* @in: input #IMAGE
* @out: output #IMAGE
* @c: constant
*
* This operation calculates @in = @c (image element is more than
* or equal to
* constant @c) and writes the result to @out.
*
* See also: im_lesseq(), im_lesseqconst().
*
* Returns: 0 on success, -1 on error
*/
int
im_moreeqconst( IMAGE *in, IMAGE *out, double c )
{
return( im_moreeq_vec( in, out, 1, &c ) );
}