This commit is contained in:
John Cupitt 2009-09-19 10:38:17 +00:00
parent 5b4c56c53f
commit 9a7d34fb10

View File

@ -1,371 +0,0 @@
/* maths.c - +, -, *, / of two images
*
* Copyright: 1990, N. Dessipris.
*
* Author: Nicos Dessipris
* Written on: 02/05/1990
* Modified on:
* 29/4/93 J.Cupitt
* - now works for partial images
* 1/7/93 JC
* - adapted for partial v2
* 9/5/95 JC
* - simplified: now just handles 10 cases (instead of 50), using
* im_clip2*() to help
* - now uses im_wrapmany() rather than im_generate()
* 31/5/96 JC
* - SWAP() removed, *p++ removed
* 27/9/04
* - im__cast_and_call() now matches bands as well
* - ... so 1 band + 4 band image -> 4 band image
* 8/12/06
* - add liboil support
* 18/8/08
* - revise upcasting system
* - im__cast_and_call() no longer sets bbits for you
* - add gtkdoc comments
* - remove separate complex case, just double size
* 11/9/09
* - im__cast_and_call() becomes im__arith_binary()
* - more of operation scaffold moved inside
* 18/9/09
* - redne as math.c, now generates -, *, / as well
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <vips/vips.h>
#include <vips/internal.h>
#ifdef HAVE_LIBOIL
#include <liboil/liboil.h>
#endif /*HAVE_LIBOIL*/
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
#define LOOP( IN, OUT ) { \
IN *p1 = (IN *) in[0]; \
IN *p2 = (IN *) in[1]; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < sz; x++ ) \
q[x] = p1[x] + p2[x]; \
}
static void
add_buffer( PEL **in, PEL *out, int width, IMAGE *im )
{
/* Complex just doubles the size.
*/
const int sz = width * im->Bands * (im_iscomplex( im ) ? 2 : 1);
int x;
/* Add all input types. Keep types here in sync with bandfmt_add[]
* below.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOP( unsigned char, unsigned short ); break;
case IM_BANDFMT_CHAR: LOOP( signed char, signed short ); break;
case IM_BANDFMT_USHORT: LOOP( unsigned short, unsigned int ); break;
case IM_BANDFMT_SHORT: LOOP( signed short, signed int ); break;
case IM_BANDFMT_UINT: LOOP( unsigned int, unsigned int ); break;
case IM_BANDFMT_INT: LOOP( signed int, signed int ); break;
case IM_BANDFMT_FLOAT:
case IM_BANDFMT_COMPLEX:
#ifdef HAVE_LIBOIL
oil_add_f32( (float *) out,
(float *) in[0], (float *) in[1], sz );
#else /*!HAVE_LIBOIL*/
LOOP( float, float );
#endif /*HAVE_LIBOIL*/
break;
case IM_BANDFMT_DOUBLE:
case IM_BANDFMT_DPCOMPLEX:
LOOP( double, double );
break;
default:
assert( 0 );
}
}
/* Save a bit of typing.
*/
#define UC IM_BANDFMT_UCHAR
#define C IM_BANDFMT_CHAR
#define US IM_BANDFMT_USHORT
#define S IM_BANDFMT_SHORT
#define UI IM_BANDFMT_UINT
#define I IM_BANDFMT_INT
#define F IM_BANDFMT_FLOAT
#define X IM_BANDFMT_COMPLEX
#define D IM_BANDFMT_DOUBLE
#define DX IM_BANDFMT_DPCOMPLEX
/* For two integer types, the "largest", ie. one which can represent the
* full range of both.
*/
static int bandfmt_largest[6][6] = {
/* UC C US S UI I */
/* UC */ { UC, S, US, S, UI, I },
/* C */ { S, C, I, S, I, I },
/* US */ { US, I, US, I, UI, I },
/* S */ { S, S, I, S, I, I },
/* UI */ { UI, I, UI, I, UI, I },
/* I */ { I, I, I, I, I, I }
};
/* For two formats, find one which can represent the full range of both.
*/
static VipsBandFmt
im__format_common( IMAGE *in1, IMAGE *in2 )
{
if( im_iscomplex( in1 ) || im_iscomplex( in2 ) ) {
/* What kind of complex?
*/
if( in1->BandFmt == IM_BANDFMT_DPCOMPLEX ||
in2->BandFmt == IM_BANDFMT_DPCOMPLEX )
/* Output will be DPCOMPLEX.
*/
return( IM_BANDFMT_DPCOMPLEX );
else
return( IM_BANDFMT_COMPLEX );
}
else if( im_isfloat( in1 ) || im_isfloat( in2 ) ) {
/* What kind of float?
*/
if( in1->BandFmt == IM_BANDFMT_DOUBLE ||
in2->BandFmt == IM_BANDFMT_DOUBLE )
return( IM_BANDFMT_DOUBLE );
else
return( IM_BANDFMT_FLOAT );
}
else
/* Must be int+int -> int.
*/
return( bandfmt_largest[in1->BandFmt][in2->BandFmt] );
}
/* Make an n-band image. Input 1 or n bands.
*/
int
im__bandup( IMAGE *in, IMAGE *out, int n )
{
IMAGE *bands[256];
int i;
if( in->Bands == n )
return( im_copy( in, out ) );
if( in->Bands != 1 ) {
im_error( "im__bandup", _( "not one band or %d bands" ), n );
return( -1 );
}
if( n > 256 || n < 1 ) {
im_error( "im__bandup", "%s", _( "bad bands" ) );
return( -1 );
}
for( i = 0; i < n; i++ )
bands[i] = in;
return( im_gbandjoin( bands, out, n ) );
}
/* The common part of most binary arithmetic, relational and boolean
* operators. We:
*
* - check in and out
* - cast in1 and in2 up to a common format
* - cast the common format to the output format with the supplied table
* - equalise bands
* - run the supplied buffer operation
*/
int
im__arith_binary( const char *name,
IMAGE *in1, IMAGE *in2, IMAGE *out,
int format_table[10],
im_wrapmany_fn fn, void *a )
{
VipsBandFmt fmt;
IMAGE *t[5];
if( im_piocheck( in1, out ) ||
im_pincheck( in2 ) ||
im_check_bands_1orn( name, in1, in2 ) ||
im_check_uncoded( name, in1 ) ||
im_check_uncoded( name, in2 ) )
return( -1 );
if( im_cp_descv( out, in1, in2, NULL ) )
return( -1 );
/* What number of bands will we write?
*/
out->Bands = IM_MAX( in1->Bands, in2->Bands );
/* What output type will we write? int, float or complex.
*/
out->BandFmt = format_table[im__format_common( in1, in2 )];
out->Bbits = im_bits_of_fmt( out->BandFmt );
if( im_open_local_array( out, t, 4, "type cast:1", "p" ) )
return( -1 );
/* Cast our input images up to a common type.
*/
fmt = im__format_common( in1, in2 );
if( im_clip2fmt( in1, t[0], fmt ) ||
im_clip2fmt( in2, t[1], fmt ) )
return( -1 );
/* Force bands up to the same as out.
*/
if( im__bandup( t[0], t[2], out->Bands ) ||
im__bandup( t[1], t[3], out->Bands ) )
return( -1 );
/* And process!
*/
t[4] = NULL;
if( im_wrapmany( t + 2, out, fn, out, a ) )
return( -1 );
return( 0 );
}
/* Type promotion for addition. Sign and value preserving. Make sure these
* match the case statement in add_buffer() above.
*/
static int bandfmt_add[10] = {
/* UC C US S UI I F X D DX */
US, S, UI, I, UI, I, F, X, D, DX
};
/**
* im_add:
* @in1: input #IMAGE 1
* @in2: input #IMAGE 2
* @out: output #IMAGE
*
* This operation calculates @in1 + @in2 and writes the result to @out.
* The images must be the same size. They may have any format.
*
* If the number of bands differs, one of the images
* must have one band. In this case, an n-band image is formed from the
* one-band image by joining n copies of the one-band image together, and then
* the two n-band images are operated upon.
*
* The two input images are cast up to the smallest common type (see table
* Smallest common format in
* <link linkend="VIPS-arithmetic">arithmetic</link>), then the
* following table is used to determine the output type:
*
* <table>
* <title>im_add() type promotion</title>
* <tgroup cols='2' align='left' colsep='1' rowsep='1'>
* <thead>
* <row>
* <entry>input type</entry>
* <entry>output type</entry>
* </row>
* </thead>
* <tbody>
* <row>
* <entry>uchar</entry>
* <entry>ushort</entry>
* </row>
* <row>
* <entry>char</entry>
* <entry>short</entry>
* </row>
* <row>
* <entry>ushort</entry>
* <entry>uint</entry>
* </row>
* <row>
* <entry>short</entry>
* <entry>int</entry>
* </row>
* <row>
* <entry>uint</entry>
* <entry>uint</entry>
* </row>
* <row>
* <entry>int</entry>
* <entry>int</entry>
* </row>
* <row>
* <entry>float</entry>
* <entry>float</entry>
* </row>
* <row>
* <entry>double</entry>
* <entry>double</entry>
* </row>
* <row>
* <entry>complex</entry>
* <entry>complex</entry>
* </row>
* <row>
* <entry>double complex</entry>
* <entry>double complex</entry>
* </row>
* </tbody>
* </tgroup>
* </table>
*
* In other words, the output type is just large enough to hold the whole
* range of possible values.
*
* See also: im_subtract(), im_lintra().
*
* Returns: 0 on success, -1 on error
*/
int
im_add( IMAGE *in1, IMAGE *in2, IMAGE *out )
{
return( im__arith_binary( "im_add",
in1, in2, out,
bandfmt_add,
(im_wrapmany_fn) add_buffer, NULL ) );
}