add mapim test

and a python mapim example
This commit is contained in:
John Cupitt 2015-11-19 11:44:58 +00:00
parent e47b631105
commit d27bbd6803
3 changed files with 141 additions and 2 deletions

2
TODO
View File

@ -2,6 +2,8 @@
- easy to get a segv with Nicolas's interpolators, argh - easy to get a segv with Nicolas's interpolators, argh
- speed up rect with atan2?
- vips_resize() should not use the anti-alias filter if vips_shrink() has - vips_resize() should not use the anti-alias filter if vips_shrink() has
not been called, ie. for shrinks < 2 or so not been called, ie. for shrinks < 2 or so

72
python/example/cod.py Executable file
View File

@ -0,0 +1,72 @@
#!/usr/bin/python
import sys
import logging
#logging.basicConfig(level = logging.DEBUG)
import gi
gi.require_version('Vips', '8.0')
from gi.repository import Vips
#Vips.cache_set_trace(True)
# Run a function expecting a complex image on a two-band image
def run_cmplx(fn, image):
if image.format == Vips.BandFormat.FLOAT:
new_format = Vips.BandFormat.COMPLEX
elif image.format == Vips.BandFormat.DOUBLE:
new_format = Vips.BandFormat.DPCOMPLEX
else:
raise "run_cmplx: not float or double"
# tag as complex, run, revert tagging
cmplx = image.copy(bands = 1, format = new_format)
cmplx_result = fn(cmplx)
return cmplx_result.copy(bands = 2, format = image.format)
def to_polar(image):
"""Transform image coordinates to polar.
The image is transformed so that it is wrapped around a point in the
centre. Vertical straight lines become circles or segments of circles,
horizontal straight lines become radial spokes.
"""
# xy image, origin in the centre, scaled to fit image to a circle
xy = Vips.Image.xyz(image.width, image.height)
xy -= [image.width / 2.0, image.height / 2.0]
scale = min(image.width, image.height) / float(image.width)
xy *= 2.0 / scale
# to polar, scale vertical axis to 360 degrees
index = run_cmplx(lambda x: x.polar(), xy)
index *= [1, image.height / 360.0]
return image.mapim(index)
def to_rectangular(image):
"""Transform image coordinates to rectangular.
The image is transformed so that it is unwrapped from a point in the
centre. Circles or segments of circles become vertical straight lines,
radial lines become horizontal lines.
"""
# xy image, vertical scaled to 360 degrees
xy = Vips.Image.xyz(image.width, image.height)
xy *= [1, 360.0 / image.height]
# to rect, scale to image rect
index = run_cmplx(lambda x: x.rect(), xy)
scale = min(image.width, image.height) / float(image.width)
index *= scale / 2.0
index += [image.width / 2.0, image.height / 2.0]
return image.mapim(index)
a = Vips.Image.new_from_file(sys.argv[1])
a = to_polar(a)
a = to_rectangular(a)
a.write_to_file(sys.argv[2])

View File

@ -10,6 +10,59 @@ from gi.repository import Vips
Vips.leak_set(True) Vips.leak_set(True)
# Run a function expecting a complex image on a two-band image
def run_cmplx(fn, image):
if image.format == Vips.BandFormat.FLOAT:
new_format = Vips.BandFormat.COMPLEX
elif image.format == Vips.BandFormat.DOUBLE:
new_format = Vips.BandFormat.DPCOMPLEX
else:
raise "run_cmplx: not float or double"
# tag as complex, run, revert tagging
cmplx = image.copy(bands = 1, format = new_format)
cmplx_result = fn(cmplx)
return cmplx_result.copy(bands = 2, format = image.format)
def to_polar(image):
"""Transform image coordinates to polar.
The image is transformed so that it is wrapped around a point in the
centre. Vertical straight lines become circles or segments of circles,
horizontal straight lines become radial spokes.
"""
# xy image, zero in the centre, scaled to fit image to a circle
xy = Vips.Image.xyz(image.width, image.height)
xy -= [image.width / 2.0, image.height / 2.0]
scale = min(image.width, image.height) / float(image.width)
xy *= 2.0 / scale
# to polar, scale vertical axis to 360 degrees
index = run_cmplx(lambda x: x.polar(), xy)
index *= [1, image.height / 360.0]
return image.mapim(index)
def to_rectangular(image):
"""Transform image coordinates to rectangular.
The image is transformed so that it is unwrapped from a point in the
centre. Circles or segments of circles become vertical straight lines,
radial lines become horizontal lines.
"""
# xy image, vertical scaled to 360 degrees
xy = Vips.Image.xyz(image.width, image.height)
xy *= [1, 360.0 / image.height]
# to rect, scale to image rect
index = run_cmplx(lambda x: x.rect(), xy)
scale = min(image.width, image.height) / float(image.width)
index *= scale / 2.0
index += [image.width / 2.0, image.height / 2.0]
return image.mapim(index)
# an expanding zip ... if either of the args is a scalar or a one-element list, # an expanding zip ... if either of the args is a scalar or a one-element list,
# duplicate it down the other side # duplicate it down the other side
def zip_expand(x, y): def zip_expand(x, y):
@ -63,7 +116,7 @@ class TestResample(unittest.TestCase):
im2 = im.shrink(2.5, 2.5) im2 = im.shrink(2.5, 2.5)
self.assertEqual(im2.width, im.width // 2.5) self.assertEqual(im2.width, im.width // 2.5)
self.assertEqual(im2.height, im.height // 2.5) self.assertEqual(im2.height, im.height // 2.5)
self.assertTrue(abs(im.avg() - im2.avg()) < 1) self.assertLess(abs(im.avg() - im2.avg()), 1)
def test_similarity(self): def test_similarity(self):
im = Vips.Image.new_from_file("images/IMG_4618.jpg") im = Vips.Image.new_from_file("images/IMG_4618.jpg")
@ -71,7 +124,7 @@ class TestResample(unittest.TestCase):
im3 = im.affine([0, -1, 1, 0]) im3 = im.affine([0, -1, 1, 0])
# rounding in calculating the affine transform from the angle stops this # rounding in calculating the affine transform from the angle stops this
# being exactly true # being exactly true
self.assertTrue((im2 - im3).abs().max() < 50) self.assertLess((im2 - im3).abs().max(), 50)
def test_similarity_scale(self): def test_similarity_scale(self):
im = Vips.Image.new_from_file("images/IMG_4618.jpg") im = Vips.Image.new_from_file("images/IMG_4618.jpg")
@ -79,5 +132,17 @@ class TestResample(unittest.TestCase):
im3 = im.affine([2, 0, 0, 2]) im3 = im.affine([2, 0, 0, 2])
self.assertEqual((im2 - im3).abs().max(), 0) self.assertEqual((im2 - im3).abs().max(), 0)
def test_mapim(self):
im = Vips.Image.new_from_file("images/IMG_4618.jpg")
p = to_polar(im)
r = to_rectangular(p)
# the left edge (which is squashed to the origin) will be badly
# distorted, but the rest should not be too bad
a = r.crop(50, 0, im.width - 50, im.height).gaussblur(2)
b = im.crop(50, 0, im.width - 50, im.height).gaussblur(2)
self.assertLess((a - b).abs().max(), 20)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()