#!/usr/bin/python

import unittest
import math

#import logging
#logging.basicConfig(level = logging.DEBUG)

from gi.repository import Vips 

Vips.leak_set(True)

# Run a function expecting a complex image on a two-band image
def run_cmplx(fn, image):
    if image.format == Vips.BandFormat.FLOAT:
        new_format = Vips.BandFormat.COMPLEX
    elif image.format == Vips.BandFormat.DOUBLE:
        new_format = Vips.BandFormat.DPCOMPLEX
    else:
        raise "run_cmplx: not float or double"

    # tag as complex, run, revert tagging
    cmplx = image.copy(bands = 1, format = new_format)
    cmplx_result = fn(cmplx)

    return cmplx_result.copy(bands = 2, format = image.format)

def to_polar(image):
    """Transform image coordinates to polar.

    The image is transformed so that it is wrapped around a point in the
    centre. Vertical straight lines become circles or segments of circles,
    horizontal straight lines become radial spokes.
    """
    # xy image, zero in the centre, scaled to fit image to a circle
    xy = Vips.Image.xyz(image.width, image.height)
    xy -= [image.width / 2.0, image.height / 2.0]
    scale = min(image.width, image.height) / float(image.width)
    xy *= 2.0 / scale

    # to polar, scale vertical axis to 360 degrees
    index = run_cmplx(lambda x: x.polar(), xy)
    index *= [1, image.height / 360.0]

    return image.mapim(index)

def to_rectangular(image):
    """Transform image coordinates to rectangular.

    The image is transformed so that it is unwrapped from a point in the
    centre. Circles or segments of circles become vertical straight lines,
    radial lines become horizontal lines.
    """
    # xy image, vertical scaled to 360 degrees
    xy = Vips.Image.xyz(image.width, image.height)
    xy *= [1, 360.0 / image.height]

    # to rect, scale to image rect
    index = run_cmplx(lambda x: x.rect(), xy)
    scale = min(image.width, image.height) / float(image.width)
    index *= scale / 2.0
    index += [image.width / 2.0, image.height / 2.0]

    return image.mapim(index)

# an expanding zip ... if either of the args is a scalar or a one-element list,
# duplicate it down the other side 
def zip_expand(x, y):
    # handle singleton list case
    if isinstance(x, list) and len(x) == 1:
        x = x[0]
    if isinstance(y, list) and len(y) == 1:
        y = y[0]

    if isinstance(x, list) and isinstance(y, list):
        return list(zip(x, y))
    elif isinstance(x, list):
        return [[i, y] for i in x]
    elif isinstance(y, list):
        return [[x, j] for j in y]
    else:
        return [[x, y]]

class TestResample(unittest.TestCase):
    # test a pair of things which can be lists for approx. equality
    def assertAlmostEqualObjects(self, a, b, places = 4, msg = ''):
        # print 'assertAlmostEqualObjects %s = %s' % (a, b)
        for x, y in zip_expand(a, b):
            self.assertAlmostEqual(x, y, places = places, msg = msg)

    def test_affine(self):
        im = Vips.Image.new_from_file("images/IMG_4618.jpg")

        # vsqbs is non-interpolatory, don't test this way
        for name in ["nearest", "bicubic", "bilinear", "nohalo", "lbb"]:
            x = im
            interpolate = Vips.Interpolate.new(name)
            for i in range(4):
                x = x.affine([0, 1, 1, 0], interpolate = interpolate)
 
            self.assertEqual((x - im).abs().max(), 0)

    def test_resize(self):
        im = Vips.Image.new_from_file("images/IMG_4618.jpg")
        im2 = im.resize(0.25)
        self.assertEqual(im2.width, im.width // 4)
        self.assertEqual(im2.height, im.height // 4)

    def test_shrink(self):
        im = Vips.Image.new_from_file("images/IMG_4618.jpg")
        im2 = im.shrink(4, 4)
        self.assertEqual(im2.width, im.width // 4)
        self.assertEqual(im2.height, im.height // 4)
        self.assertTrue(abs(im.avg() - im2.avg()) < 1)

        im2 = im.shrink(2.5, 2.5)
        self.assertEqual(im2.width, im.width // 2.5)
        self.assertEqual(im2.height, im.height // 2.5)
        self.assertLess(abs(im.avg() - im2.avg()), 1)

    def test_similarity(self):
        im = Vips.Image.new_from_file("images/IMG_4618.jpg")
        im2 = im.similarity(angle = 90)
        im3 = im.affine([0, -1, 1, 0])
        # rounding in calculating the affine transform from the angle stops this
        # being exactly true
        self.assertLess((im2 - im3).abs().max(), 50)

    def test_similarity_scale(self):
        im = Vips.Image.new_from_file("images/IMG_4618.jpg")
        im2 = im.similarity(scale = 2)
        im3 = im.affine([2, 0, 0, 2])
        self.assertEqual((im2 - im3).abs().max(), 0)

    def test_mapim(self):
        im = Vips.Image.new_from_file("images/IMG_4618.jpg")

        p = to_polar(im)
        r = to_rectangular(p)

        # the left edge (which is squashed to the origin) will be badly
        # distorted, but the rest should not be too bad
        a = r.crop(50, 0, im.width - 50, im.height).gaussblur(2)
        b = im.crop(50, 0, im.width - 50, im.height).gaussblur(2)
        self.assertLess((a - b).abs().max(), 20)

if __name__ == '__main__':
    unittest.main()