#!/usr/bin/python import unittest #import logging #logging.basicConfig(level = logging.DEBUG) from gi.repository import Vips from vips8 import vips unsigned_formats = [Vips.BandFormat.UCHAR, Vips.BandFormat.USHORT, Vips.BandFormat.UINT] signed_formats = [Vips.BandFormat.CHAR, Vips.BandFormat.SHORT, Vips.BandFormat.INT] float_formats = [Vips.BandFormat.FLOAT, Vips.BandFormat.DOUBLE] complex_formats = [Vips.BandFormat.COMPLEX, Vips.BandFormat.DPCOMPLEX] int_formats = unsigned_formats + signed_formats noncomplex_formats = int_formats + float_formats all_formats = int_formats + float_formats + complex_formats # an expanding zip ... if either of the args is not a list, duplicate it down # the other def zip_expand(x, y): if isinstance(x, list) and isinstance(y, list): return zip(x, y) elif isinstance(x, list): return [[i, y] for i in x] elif isinstance(y, list): return [[x, j] for j in y] else: return [[x, y]] # run a 1-ary function on a thing -- loop over elements if the # thing is a list def run_fn(fn, x): if isinstance(x, list): return [fn(i) for i in x] else: return fn(x) # run a 2-ary function on two things -- loop over elements pairwise if the # things are lists def run_fn2(fn, x, y): if isinstance(x, Vips.Image) or isinstance(y, Vips.Image): return fn(x, y) elif isinstance(x, list) or isinstance(y, list): return [fn(i, j) for i, j in zip_expand(x, y)] else: return fn(x, y) class TestArithmetic(unittest.TestCase): # test a pair of things which can be lists for approx. equality def assertAlmostEqualObjects(self, a, b, msg = ''): for x, y in zip_expand(a, b): #print 'assertAlmostEqual %s = %s' % (x, y) self.assertAlmostEqual(x, y, places = 4, msg = msg) # run a function on an image and on a single pixel, the results # should match def run_cmp(self, message, im, x, y, fn): a = im.getpoint(x, y) v1 = fn(a) im2 = fn(im) v2 = im2.getpoint(x, y) self.assertAlmostEqualObjects(v1, v2, msg = message) # run a function on (image, constant), and on (constant, image). # 50,50 and 10,10 should have different values on the test image def run_testconst(self, message, fn, im, c): self.run_cmp(message, im, 50, 50, lambda x: run_fn2(fn, x, c)) self.run_cmp(message, im, 50, 50, lambda x: run_fn2(fn, c, x)) self.run_cmp(message, im, 10, 10, lambda x: run_fn2(fn, x, c)) self.run_cmp(message, im, 10, 10, lambda x: run_fn2(fn, c, x)) def run_arith_const(self, fn, fmt = all_formats): [self.run_testconst(fn.func_name + ' scalar', fn, x.cast(y), 2) for x in self.all_images for y in fmt] [self.run_testconst(fn.func_name + ' vector', fn, self.colour.cast(y), [1, 2, 3]) for y in fmt] # run a function on a pair of images and on a pair of pixels, the results # should match def run_cmp2(self, message, left, right, x, y, fn): a = left.getpoint(x, y) b = right.getpoint(x, y) v1 = fn(a, b) after = fn(left, right) v2 = after.getpoint(x, y) self.assertAlmostEqualObjects(v1, v2, msg = message) # run a function on a pair of images # 50,50 and 10,10 should have different values on the test image def run_test2(self, message, left, right, fn): self.run_cmp2(message, left, right, 50, 50, lambda x, y: run_fn2(fn, x, y)) self.run_cmp2(message, left, right, 10, 10, lambda x, y: run_fn2(fn, x, y)) def run_arith(self, fn, fmt = all_formats): [self.run_test2(fn.func_name + ' image', x.cast(y), x.cast(z), fn) for x in self.all_images for y in fmt for z in fmt] def setUp(self): im = Vips.Image.mask_ideal(100, 100, 0.5) self.colour = im * [1, 2, 3] + [2, 3, 4] self.mono = self.colour.extract_band(1) self.all_images = [self.mono, self.colour] # test all operator overloads we define def test_add(self): def add(x, y): return x + y self.run_arith_const(add) self.run_arith(add) def test_sub(self): def sub(x, y): return x - y self.run_arith_const(sub) self.run_arith(sub) def test_mul(self): def mul(x, y): return x * y self.run_arith_const(mul) self.run_arith(mul) def test_div(self): def div(x, y): return x / y # (const / image) needs (image ** -1), which won't work for complex self.run_arith_const(div, fmt = noncomplex_formats) self.run_arith(div) def test_floordiv(self): def my_floordiv(x, y): return x // y # (const // image) needs (image ** -1), which won't work for complex self.run_arith_const(my_floordiv, fmt = noncomplex_formats) self.run_arith(my_floordiv, fmt = noncomplex_formats) def test_pow(self): def my_pow(x, y): return x ** y # (image ** x) won't work for complex images ... just test non-complex self.run_arith_const(my_pow, fmt = noncomplex_formats) self.run_arith(my_pow, fmt = noncomplex_formats) def test_and(self): def my_and(x, y): # python doesn't allow bools on float if isinstance(x, float): x = int(x) if isinstance(y, float): y = int(y) return x & y self.run_arith_const(my_and, fmt = noncomplex_formats) self.run_arith(my_and, fmt = noncomplex_formats) def test_or(self): def my_or(x, y): # python doesn't allow bools on float if isinstance(x, float): x = int(x) if isinstance(y, float): y = int(y) return x | y self.run_arith_const(my_or, fmt = noncomplex_formats) self.run_arith(my_or, fmt = noncomplex_formats) def test_xor(self): def my_xor(x, y): # python doesn't allow bools on float if isinstance(x, float): x = int(x) if isinstance(y, float): y = int(y) return x ^ y self.run_arith_const(my_xor, fmt = noncomplex_formats) self.run_arith(my_xor, fmt = noncomplex_formats) # run a function on an image, # 50,50 and 10,10 should have different values on the test image def run_testunary(self, message, im, fn): self.run_cmp(message, im, 50, 50, lambda x: run_fn(fn, x)) self.run_cmp(message, im, 10, 10, lambda x: run_fn(fn, x)) def run_unary(self, images, fn, fmt = all_formats): [self.run_testunary(fn.func_name + ' image', x.cast(y), fn) for x in images for y in fmt] def test_abs(self): def my_abs(x): return abs(x) im = -self.colour self.run_unary([im], my_abs) def test_lshift(self): def my_lshift(x): # python doesn't allow float << int if isinstance(x, float): x = int(x) return x << 2 # we don't support constant << image, treat as a unary self.run_unary(self.all_images, my_lshift, fmt = noncomplex_formats) def test_rshift(self): def my_rshift(x): # python doesn't allow float >> int if isinstance(x, float): x = int(x) return x >> 2 # we don't support constant >> image, treat as a unary self.run_unary(self.all_images, my_rshift, fmt = noncomplex_formats) def test_mod(self): def my_mod(x): return x % 2 # we don't support constant % image, treat as a unary self.run_unary(self.all_images, my_mod, fmt = noncomplex_formats) def test_pos(self): def my_pos(x): return +x self.run_unary(self.all_images, my_pos) def test_neg(self): def my_neg(x): return -x self.run_unary(self.all_images, my_neg) def test_invert(self): def my_invert(x): if isinstance(x, float): x = int(x) return ~x & 0xff # ~image is trimmed to image max so it's hard to test for all formats # just test uchar self.run_unary(self.all_images, my_invert, fmt = [Vips.BandFormat.UCHAR]) # test the rest of VipsArithmetic def test_avg(self): im = Vips.Image.black(50, 100) test = im.insert(im + 100, 50, 0, expand = True) for fmt in all_formats: self.assertAlmostEqual(test.cast(fmt).avg(), 50) def test_deviate(self): im = Vips.Image.black(50, 100) test = im.insert(im + 100, 50, 0, expand = True) for fmt in noncomplex_formats: self.assertAlmostEqual(test.cast(fmt).deviate(), 50, places = 2) def test_polar(self): im = Vips.Image.black(100, 100) + 100 im = im.complexform(im) im = im.polar() self.assertAlmostEqual(im.real().avg(), 100 * 2 ** 0.5) self.assertAlmostEqual(im.imag().avg(), 45) def test_rect(self): im = Vips.Image.black(100, 100) im = (im + 100 * 2 ** 0.5).complexform(im + 45) im = im.rect() self.assertAlmostEqual(im.real().avg(), 100) self.assertAlmostEqual(im.imag().avg(), 100) def test_conjugate(self): im = Vips.Image.black(100, 100) + 100 im = im.complexform(im) im = im.conj() self.assertAlmostEqual(im.real().avg(), 100) self.assertAlmostEqual(im.imag().avg(), -100) def test_histfind(self): im = Vips.Image.black(50, 100) test = im.insert(im + 10, 50, 0, expand = True) for fmt in all_formats: hist = test.cast(fmt).hist_find() self.assertAlmostEqualObjects(hist.getpoint(0,0), [5000]) self.assertAlmostEqualObjects(hist.getpoint(10,0), [5000]) self.assertAlmostEqualObjects(hist.getpoint(5,0), [0]) test = test * [1, 2, 3] for fmt in all_formats: hist = test.cast(fmt).hist_find(band = 0) self.assertAlmostEqualObjects(hist.getpoint(0,0), [5000]) self.assertAlmostEqualObjects(hist.getpoint(10,0), [5000]) self.assertAlmostEqualObjects(hist.getpoint(5,0), [0]) hist = test.cast(fmt).hist_find(band = 1) self.assertAlmostEqualObjects(hist.getpoint(0,0), [5000]) self.assertAlmostEqualObjects(hist.getpoint(20,0), [5000]) self.assertAlmostEqualObjects(hist.getpoint(5,0), [0]) def test_histfind_indexed(self): im = Vips.Image.black(50, 100) test = im.insert(im + 10, 50, 0, expand = True) index = test / 10 for x in noncomplex_formats: for y in [Vips.BandFormat.UCHAR, Vips.BandFormat.USHORT]: a = test.cast(x) b = index.cast(y) hist = a.hist_find_indexed(b) self.assertAlmostEqualObjects(hist.getpoint(0,0), [0]) self.assertAlmostEqualObjects(hist.getpoint(1,0), [50000]) def test_histfind_ndim(self): im = Vips.Image.black(100, 100) + [1, 2, 3] for fmt in noncomplex_formats: hist = im.cast(fmt).hist_find_ndim() self.assertAlmostEqualObjects(hist.getpoint(0,0)[0], 10000) self.assertAlmostEqualObjects(hist.getpoint(5,5)[5], 0) hist = im.cast(fmt).hist_find_ndim(bins = 1) self.assertAlmostEqualObjects(hist.getpoint(0,0)[0], 10000) self.assertEqual(hist.width, 1) self.assertEqual(hist.height, 1) self.assertEqual(hist.bands, 1) def test_hough_circle(self): test = Vips.Image.black(100, 100).draw_circle(100, 50, 50, 40) for fmt in all_formats: im = test.cast(fmt) hough = im.hough_circle(min_radius = 35, max_radius = 45) v, x, y = hough.maxpos() vec = hough.getpoint(x, y) r = vec.index(v) + 35 self.assertAlmostEqual(x, 50) self.assertAlmostEqual(y, 50) self.assertAlmostEqual(r, 40) def test_hough_line(self): test = Vips.Image.black(100, 100).draw_line(100, 10, 90, 90, 10) for fmt in all_formats: im = test.cast(fmt) hough = im.hough_line() v, x, y = hough.maxpos() angle = 360.0 * x / hough.width distance = test.height * y / hough.height self.assertAlmostEqual(angle, 45) self.assertAlmostEqual(distance, 70) if __name__ == '__main__': unittest.main()