/* @(#) Multiply two images * @(#) Images must have the same no of bands and can be of any type * @(#) No check for overflow is carried out. * @(#) * @(#) int * @(#) im_multiply(in1, in2, out) * @(#) IMAGE *in1, *in2, *out; * @(#) * @(#) Returns 0 on success and -1 on error * @(#) * * Copyright: 1990, N. Dessipris. * * Author: Nicos Dessipris * Written on: 02/05/1990 * Modified on: * 29/4/93 JC * - now works for partial images * 1/7/93 JC * - adapted for partial v2 * - ANSIfied * 19/10/93 JC * - coredump-inducing bug in complex*complex fixed * 13/12/93 * - char*short bug fixed * 12/6/95 JC * - new im_add adapted to make new im_multiply * 27/9/04 * - updated for 1 band $op n band image -> n band image case * 8/12/06 * - add liboil support */ /* This file is part of VIPS. VIPS is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk */ #ifdef HAVE_CONFIG_H #include #endif /*HAVE_CONFIG_H*/ #include #include #include #include #include #include #include #ifdef HAVE_LIBOIL #include #endif /*HAVE_LIBOIL*/ #ifdef WITH_DMALLOC #include #endif /*WITH_DMALLOC*/ /* Swap two IMAGE pointers. */ #define SWAP(A,B) { \ IMAGE *t; \ t = (A); (A) = (B); (B) = t; \ } /* Complex multiply. */ #define cloop(TYPE) \ {\ TYPE *p1 = (TYPE *) in[0];\ TYPE *p2 = (TYPE *) in[1];\ TYPE *q = (TYPE *) out;\ \ for( x = 0; x < sz; x++ ) {\ double x1 = p1[0];\ double y1 = p1[1];\ double x2 = p2[0];\ double y2 = p2[1];\ \ p1 += 2;\ p2 += 2;\ \ q[0] = x1 * x2 - y1 * y2;\ q[1] = x1 * y2 + x2 * y1;\ \ q += 2;\ }\ } /* Real multiply. */ #define rloop(TYPE) \ {\ TYPE *p1 = (TYPE *) in[0];\ TYPE *p2 = (TYPE *) in[1];\ TYPE *q = (TYPE *) out;\ \ for( x = 0; x < sz; x++ )\ q[x] = p1[x] * p2[x];\ } static void multiply_buffer( PEL **in, PEL *out, int width, IMAGE *im ) { int x; int sz = width * im->Bands; /* Multiply all input types. */ switch( im->BandFmt ) { case IM_BANDFMT_CHAR: rloop( signed char ); break; case IM_BANDFMT_UCHAR: rloop( unsigned char ); break; case IM_BANDFMT_SHORT: rloop( signed short ); break; case IM_BANDFMT_USHORT: rloop( unsigned short ); break; case IM_BANDFMT_INT: rloop( signed int ); break; case IM_BANDFMT_UINT: rloop( unsigned int ); break; case IM_BANDFMT_FLOAT: #ifdef HAVE_LIBOIL oil_multiply_f32( (float *) out, (float *) in[0], (float *) in[1], sz ); #else /*!HAVE_LIBOIL*/ rloop( float ); #endif /*HAVE_LIBOIL*/ break; case IM_BANDFMT_DOUBLE: rloop( double ); break; case IM_BANDFMT_COMPLEX: cloop( float ); break; case IM_BANDFMT_DPCOMPLEX: cloop( double ); break; default: assert( 0 ); } } /* Save a bit of typing. */ #define UC IM_BANDFMT_UCHAR #define C IM_BANDFMT_CHAR #define US IM_BANDFMT_USHORT #define S IM_BANDFMT_SHORT #define UI IM_BANDFMT_UINT #define I IM_BANDFMT_INT #define F IM_BANDFMT_FLOAT #define M IM_BANDFMT_COMPLEX #define D IM_BANDFMT_DOUBLE #define DM IM_BANDFMT_DPCOMPLEX /* Type conversions for two integer inputs. Rules for float and complex * encoded with ifs. We are sign and value preserving. */ static int iformat[6][6] = { /* UC C US S UI I */ /* UC */ { US, S, UI, I, UI, I }, /* C */ { S, S, I, I, I, I }, /* US */ { UI, I, UI, I, UI, I }, /* S */ { I, I, I, I, I, I }, /* UI */ { UI, I, UI, I, UI, I }, /* I */ { I, I, I, I, I, I } }; int im_multiply( IMAGE *in1, IMAGE *in2, IMAGE *out ) { /* Basic checks. */ if( im_piocheck( in1, out ) || im_pincheck( in2 ) ) return( -1 ); if( in1->Xsize != in2->Xsize || in1->Ysize != in2->Ysize ) { im_error( "im_multiply", "%s", _( "not same size" ) ); return( -1 ); } if( in1->Bands != in2->Bands && (in1->Bands != 1 && in2->Bands != 1) ) { im_error( "im_multiply", "%s", _( "not same number of bands" ) ); return( -1 ); } if( in1->Coding != IM_CODING_NONE || in2->Coding != IM_CODING_NONE ) { im_error( "im_multiply", "%s", _( "not uncoded" ) ); return( -1 ); } if( im_cp_descv( out, in1, in2, NULL ) ) return( -1 ); /* What number of bands will we write? */ out->Bands = IM_MAX( in1->Bands, in2->Bands ); /* Swap arguments to get the largest on the left. */ if( in1->Bbits < in2->Bbits ) SWAP( in1, in2 ); /* What output type will we write? int, float or complex. */ if( im_iscomplex( in1 ) || im_iscomplex( in2 ) ) { /* Make sure we have complex on the left. */ if( !im_iscomplex( in1 ) ) SWAP( in1, in2 ); /* What kind of complex? */ if( in1->BandFmt == IM_BANDFMT_DPCOMPLEX ) /* Output will be DPCOMPLEX. */ out->BandFmt = IM_BANDFMT_DPCOMPLEX; else out->BandFmt = IM_BANDFMT_COMPLEX; } else if( im_isfloat( in1 ) || im_isfloat( in2 ) ) { /* Make sure we have float on the left. */ if( !im_isfloat( in1 ) ) SWAP( in1, in2 ); /* What kind of float? */ if( in1->BandFmt == IM_BANDFMT_DOUBLE ) out->BandFmt = IM_BANDFMT_DOUBLE; else out->BandFmt = IM_BANDFMT_FLOAT; } else /* Must be int+int = int. */ out->BandFmt = iformat[in2->BandFmt][in1->BandFmt]; /* And process! */ if( im__cast_and_call( in1, in2, out, (im_wrapmany_fn) multiply_buffer, NULL ) ) return( -1 ); /* Success! */ return( 0 ); }