/* @(#) Two images as input: must match in size and type. Build an output * @(#) image blending pixels together according to a conditional image. * @(#) * @(#) The conditional image can have n bands or 1 band. If n bands, then we * @(#) choose from the two source images an element at a time. If 1 band, * @(#) then choose from the source images a pixel at a time. * @(#) * @(#) int * @(#) im_blend( c, a, b, out ) * @(#) IMAGE *c, *a, *b; * @(#) IMAGE *out; * @(#) * @(#) Returns either 0 (success) or -1 (fail). * * Modified: * 15/4/05 * - from im_ifthenelse() * 8/7/05 * - oops, broken for some combinations of band differences (thanks Joe) */ /* This file is part of VIPS. VIPS is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk */ #ifdef HAVE_CONFIG_H #include #endif /*HAVE_CONFIG_H*/ #include #include #include #ifdef WITH_DMALLOC #include #endif /*WITH_DMALLOC*/ #define iblend1( TYPE ) { \ TYPE *a = (TYPE *) ap; \ TYPE *b = (TYPE *) bp; \ TYPE *q = (TYPE *) qp; \ \ for( i = 0, x = 0; x < n; i++, x += bands ) { \ const int v = c[i]; \ \ for( z = x; z < x + bands; z++ ) \ q[z] = (v * a[z] + (255 - v) * b[z] + 128) / 255; \ } \ } #define iblendn( TYPE ) { \ TYPE *a = (TYPE *) ap; \ TYPE *b = (TYPE *) bp; \ TYPE *q = (TYPE *) qp; \ \ for( x = 0; x < n; x += bands ) { \ for( z = x; z < x + bands; z++ ) { \ const int v = c[z]; \ \ q[z] = (v * a[z] + (255 - v) * b[z] + 128) / 255; \ } \ } \ } #define fblend1( TYPE ) { \ TYPE *a = (TYPE *) ap; \ TYPE *b = (TYPE *) bp; \ TYPE *q = (TYPE *) qp; \ \ for( i = 0, x = 0; x < n; i++, x += bands ) { \ const double v = c[i] / 255.0; \ \ for( z = x; z < x + bands; z++ ) \ q[z] = v * a[z] + (1.0 - v) * b[z]; \ } \ } #define fblendn( TYPE ) { \ TYPE *a = (TYPE *) ap; \ TYPE *b = (TYPE *) bp; \ TYPE *q = (TYPE *) qp; \ \ for( x = 0; x < n; x += bands ) { \ for( z = x; z < x + bands; z++ ) { \ const double v = c[z] / 255.0; \ \ q[z] = v * a[z] + (1.0 - v) * b[z]; \ } \ } \ } #define cblend1( TYPE ) { \ TYPE *a = (TYPE *) ap; \ TYPE *b = (TYPE *) bp; \ TYPE *q = (TYPE *) qp; \ \ for( i = 0, x = 0; x < n; i++, x += bands ) { \ const double v = c[i] / 255.0; \ \ for( z = x; z < x + 2 * bands; z++ ) \ q[z] = v * a[z] + (1.0 - v) * b[z]; \ } \ } #define cblendn( TYPE ) { \ TYPE *a = (TYPE *) ap; \ TYPE *b = (TYPE *) bp; \ TYPE *q = (TYPE *) qp; \ \ for( x = 0; x < n; x += bands ) { \ for( z = x; z < x + bands; z++ ) { \ const double v = c[z] / 255.0; \ \ q[2 * z] = v * a[2 * z] + (1.0 - v) * b[2 * z]; \ q[2 * z + 1] = v * a[2 * z + 1] + \ (1.0 - v) * b[2 * z + 1]; \ } \ } \ } /* Blend with a 1-band conditional image. */ static void blend1_buffer( PEL *qp, PEL *c, PEL *ap, PEL *bp, int width, IMAGE *im ) { int i, x, z; const int bands = im->Bands; const int n = width * bands; switch( im->BandFmt ) { case IM_BANDFMT_UCHAR: iblend1( unsigned char ); break; case IM_BANDFMT_CHAR: iblend1( signed char ); break; case IM_BANDFMT_USHORT: iblend1( unsigned short ); break; case IM_BANDFMT_SHORT: iblend1( signed short ); break; case IM_BANDFMT_UINT: iblend1( unsigned int ); break; case IM_BANDFMT_INT: iblend1( signed int ); break; case IM_BANDFMT_FLOAT: fblend1( float ); break; case IM_BANDFMT_DOUBLE: fblend1( double ); break; case IM_BANDFMT_COMPLEX: cblend1( float ); break; case IM_BANDFMT_DPCOMPLEX: cblend1( double ); break; default: assert( 0 ); } } /* Blend with a many band conditional image. */ static void blendn_buffer( PEL *qp, PEL *c, PEL *ap, PEL *bp, int width, IMAGE *im ) { int x, z; const int bands = im->Bands; const int n = width * bands; switch( im->BandFmt ) { case IM_BANDFMT_UCHAR: iblendn( unsigned char ); break; case IM_BANDFMT_CHAR: iblendn( signed char ); break; case IM_BANDFMT_USHORT: iblendn( unsigned short ); break; case IM_BANDFMT_SHORT: iblendn( signed short ); break; case IM_BANDFMT_UINT: iblendn( unsigned int ); break; case IM_BANDFMT_INT: iblendn( signed int ); break; case IM_BANDFMT_FLOAT: fblendn( float ); break; case IM_BANDFMT_DOUBLE: fblendn( double ); break; case IM_BANDFMT_COMPLEX: cblendn( float ); break; case IM_BANDFMT_DPCOMPLEX: cblendn( double ); break; default: assert( 0 ); } } static int blend_gen( REGION *or, void *seq, void *client1, void *client2 ) { REGION **ir = (REGION **) seq; Rect *r = &or->valid; int le = r->left; int to = r->top; int bo = IM_RECT_BOTTOM(r); IMAGE *c = ir[0]->im; IMAGE *a = ir[1]->im; int c_elements = r->width * c->Bands; int x, y; int all0, all255; /* Ask for condition pixels. */ if( im_prepare( ir[0], r ) ) return( -1 ); /* Is the conditional all zero or all non-zero? We can avoid asking * for one of the inputs to be calculated. */ all0 = *((PEL *) IM_REGION_ADDR( ir[0], le, to )) == 0; all255 = *((PEL *) IM_REGION_ADDR( ir[0], le, to )) == 255; for( y = to; y < bo; y++ ) { PEL *p = (PEL *) IM_REGION_ADDR( ir[0], le, y ); for( x = 0; x < c_elements; x++ ) { all0 &= p[x] == 0; all255 &= p[x] == 255; } if( !all0 && !all255 ) break; } if( all255 ) { /* All 255. Point or at the then image. */ if( im_prepare( ir[1], r ) || im_region_region( or, ir[1], r, r->left, r->top ) ) return( -1 ); } else if( all0 ) { /* All zero. Point or at the else image. */ if( im_prepare( ir[2], r ) || im_region_region( or, ir[2], r, r->left, r->top ) ) return( -1 ); } else { /* Mix of set and clear ... ask for both then and else parts and * interleave. */ if( im_prepare( ir[1], r ) || im_prepare( ir[2], r ) ) return( -1 ); for( y = to; y < bo; y++ ) { PEL *cp = (PEL *) IM_REGION_ADDR( ir[0], le, y ); PEL *ap = (PEL *) IM_REGION_ADDR( ir[1], le, y ); PEL *bp = (PEL *) IM_REGION_ADDR( ir[2], le, y ); PEL *q = (PEL *) IM_REGION_ADDR( or, le, y ); if( c->Bands == 1 ) blend1_buffer( q, cp, ap, bp, r->width, a ); else blendn_buffer( q, cp, ap, bp, r->width, a ); } } return( 0 ); } int im_blend( IMAGE *c, IMAGE *a, IMAGE *b, IMAGE *out ) { IMAGE **in; /* If a and b are both LABPACK, repack agan after the blend. */ if( a->Coding == IM_CODING_LABQ || b->Coding == IM_CODING_LABQ ) { IMAGE *t[3]; int repack = a->Coding == IM_CODING_LABQ && b->Coding == IM_CODING_LABQ; if( im_open_local_array( out, t, 3, "relational-1", "p" ) ) return( -1 ); if( a->Coding == IM_CODING_LABQ ) { if( im_LabQ2Lab( a, t[0] ) ) return( -1 ); a = t[0]; } if( b->Coding == IM_CODING_LABQ ) { if( im_LabQ2Lab( b, t[1] ) ) return( -1 ); b = t[1]; } if( repack ) return( im_blend( c, a, b, t[2] ) || im_Lab2LabQ( t[2], out ) ); else return( im_blend( c, a, b, out ) ); } /* Check args. */ if( a->Coding != IM_CODING_NONE || b->Coding != IM_CODING_NONE || c->Coding != IM_CODING_NONE ) { im_error( "im_blend", "%s", _( "images not uncoded" ) ); return( -1 ); } if( a->BandFmt != b->BandFmt || a->Bands != b->Bands ) { im_error( "im_blend", "%s", _( "size and format of then and else " "must match" ) ); return( -1 ); } if( c->BandFmt != IM_BANDFMT_UCHAR ) { im_error( "im_blend", "%s", _( "conditional image must be uchar" ) ); return( -1 ); } if( c->Bands != 1 && c->Bands != a->Bands ) { im_error( "im_blend", "%s", _( "conditional image must be one band or " "same as then and else images" ) ); return( -1 ); } if( im_piocheck( c, out ) || im_pincheck( a ) || im_pincheck( b ) ) return( -1 ); if( im_demand_hint( out, IM_THINSTRIP, a, b, c, NULL ) ) return( -1 ); /* Make output image. */ if( im_cp_descv( out, a, b, c, NULL ) || !(in = im_allocate_input_array( out, c, a, b, NULL )) || im_generate( out, im_start_many, blend_gen, im_stop_many, in, NULL ) ) return( -1 ); return( 0 ); }