/* This file is part of GEGL * * GEGL is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * GEGL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General * Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with GEGL; if not, see * . * * 2008 (c) Nicolas Robidoux (developer of Yet Another Fast * Resampler). * * Acknowledgement: N. Robidoux's research on YAFR funded in part by * an NSERC (National Science and Engineering Research Council of * Canada) Discovery Grant. */ #include #include "gegl-types.h" #include "gegl-buffer-private.h" #include "gegl-sampler-yafr.h" #include #ifndef restrict #ifdef __restrict #define restrict __restrict #else #ifdef __restrict__ #define restrict __restrict__ #else #define restrict #endif #endif #endif #ifndef unlikely #ifdef __builtin_expect #define unlikely(x) __builtin_expect((x),0) #else #define unlikely(x) (x) #endif #endif enum { PROP_0, PROP_LAST }; static void gegl_sampler_yafr_get ( GeglSampler *self, const gdouble x, const gdouble y, void *output); static void set_property ( GObject *gobject, guint property_id, const GValue *value, GParamSpec *pspec); static void get_property (GObject *gobject, guint property_id, GValue *value, GParamSpec *pspec); G_DEFINE_TYPE (GeglSamplerYafr, gegl_sampler_yafr, GEGL_TYPE_SAMPLER) /* * YAFR = Yet Another Fast Resampler * * Yet Another Fast Resampler is a nonlinear resampler which consists * of a linear scheme (in this version, Catmull-Rom) plus a nonlinear * sharpening correction the purpose of which is the straightening of * diagonal interfaces between flat colour areas. * * Key properties: * * YAFR (smooth) is interpolatory: * * If asked for the value at the center of an input pixel, it will * return the corresponding value, unchanged. * * YAFR (smooth) preserves local averages: * * The average of the reconstructed intensity surface over any region * is the same as the average of the piecewise constant surface with * values over pixel areas equal to the input pixel values (the * "nearest neighbour" surface), except for a small amount of blur at * the boundary of the region. More precicely: YAFR (smooth) is a box * filtered exact area method. * * Main weaknesses of YAFR (smooth): * * Weakness 1: YAFR (smooth) improves on Catmull-Rom only for images * with at least a little bit of smoothness. * * Weakness 2: Catmull-Rom introduces a lot of haloing. YAFR (smooth) * is based on Catmull-Rom, and consequently it too introduces a lot * of haloing. * * More details regarding Weakness 1: * * If a portion of the image is such that every pixel has immediate * neighbours in the horizontal and vertical directions which have * exactly the same pixel value, then YAFR (smooth) boils down to * Catmull-Rom, and the computation of the correction is a waste. * Extreme case: If all the pixels are either pure black or pure white * in some region, as in some text images (more generally, if the * region is "bichromatic"), then the YAFR (smooth) correction is 0 in * the interior of the bichromatic region. */ static void gegl_sampler_yafr_class_init (GeglSamplerYafrClass *klass) { GeglSamplerClass *sampler_class = GEGL_SAMPLER_CLASS (klass); GObjectClass *object_class = G_OBJECT_CLASS (klass); object_class->set_property = set_property; object_class->get_property = get_property; sampler_class->get = gegl_sampler_yafr_get; } static void gegl_sampler_yafr_init (GeglSamplerYafr *self) { /* * The computation stencil is 4x4, and sticks out one column to the * left and one row above the requested integer position: */ GEGL_SAMPLER (self)->context_rect = (GeglRectangle){-1,-1,4,4}; GEGL_SAMPLER (self)->interpolate_format = babl_format ("RaGaBaA float"); } static inline gfloat catrom_yafr (const gfloat cardinal_one, const gfloat cardinal_two, const gfloat cardinal_thr, const gfloat cardinal_fou, const gfloat cardinal_uno, const gfloat cardinal_dos, const gfloat cardinal_tre, const gfloat cardinal_qua, const gfloat left_width_times_up__height_times_rite_width, const gfloat left_width_times_dow_height_times_rite_width, const gfloat left_width_times_up__height_times_dow_height, const gfloat rite_width_times_up__height_times_dow_height, const gfloat* restrict this_channels_uno_one_bptr) { /* * "sharpening" is a continuous method parameter which is * proportional to the amount of "diagonal straightening" which the * nonlinear correction part of the method may add to the underlying * linear scheme. You may also think of it as a sharpening * parameter: higher values correspond to more sharpening, and * negative values lead to strange looking effects. * * The default value is sharpening = 29/32 when the scheme being * "straightened" is Catmull-Rom---as is the case here. This value * fixes key pixel values near the diagonal boundary between two * monochrome regions (the diagonal boundary pixel values being set * to the halfway colour). * * If resampling seems to add unwanted texture artifacts, push * sharpening toward 0. It is not generally not recommended to set * sharpening to a value larger than 4. * * Sharpening is halved because the .5 which has to do with the * relative coordinates of the evaluation points (which has to do * with .5*rite_width etc) is folded into the constant to save * flops. Consequently, the largest recommended value of * sharpening_over_two is 2=4/2. * * In order to simplify interfacing with users, the parameter which * should be set by the user is normalized so that user_sharpening = * 1 when sharpening is equal to the recommended value. Consistently * with the above discussion, values of user_sharpening between 0 * and about 3.625 give good results. */ const gfloat user_sharpening = 1.f; const gfloat sharpening_over_two = user_sharpening * 0.453125f; /* * The input pixel values are described by the following stencil. * Spanish abbreviations are used to label positions from top to * bottom, English ones to label positions from left to right,: * * (ix-1,iy-1) (ix,iy-1) (ix+1,iy-1) (ix+2,iy-1) * =uno_one =uno_two =uno_thr = uno_fou * * (ix-1,iy) (ix,iy) (ix+1,iy) (ix+2,iy) * =dos_one =dos_two =dos_thr = dos_fou * * (ix-1,iy+1) (ix,iy+1) (ix+1,iy+1) (ix+2,iy+1) * =tre_one =tre_two =tre_thr = tre_fou * * (ix-1,iy+2) (ix,iy+2) (ix+1,iy+2) (ix+2,iy+2) * =qua_one =qua_two =qua_thr = qua_fou */ /* * Load the useful pixel values for the channel under * consideration. The this_channels_uno_one_bptr pointer is assumed * to point to uno_one when catrom_yafr is entered. */ const gint channels = 4; const gint pixels_per_buffer_row = 64; const gfloat uno_one = this_channels_uno_one_bptr[ 0 ]; const gfloat uno_two = this_channels_uno_one_bptr[ channels ]; const gfloat uno_thr = this_channels_uno_one_bptr[ 2 * channels ]; const gfloat uno_fou = this_channels_uno_one_bptr[ 3 * channels ]; const gfloat dos_one = this_channels_uno_one_bptr[ pixels_per_buffer_row * channels ]; const gfloat dos_two = this_channels_uno_one_bptr[ ( 1 + pixels_per_buffer_row ) * channels ]; const gfloat dos_thr = this_channels_uno_one_bptr[ ( 2 + pixels_per_buffer_row ) * channels ]; const gfloat dos_fou = this_channels_uno_one_bptr[ ( 3 + pixels_per_buffer_row ) * channels ]; const gfloat tre_one = this_channels_uno_one_bptr[ 2 * pixels_per_buffer_row * channels ]; const gfloat tre_two = this_channels_uno_one_bptr[ ( 1 + 2 * pixels_per_buffer_row ) * channels ]; const gfloat tre_thr = this_channels_uno_one_bptr[ ( 2 + 2 * pixels_per_buffer_row ) * channels ]; const gfloat tre_fou = this_channels_uno_one_bptr[ ( 3 + 2 * pixels_per_buffer_row ) * channels ]; const gfloat qua_one = this_channels_uno_one_bptr[ 3 * pixels_per_buffer_row * channels ]; const gfloat qua_two = this_channels_uno_one_bptr[ ( 1 + 3 * pixels_per_buffer_row ) * channels ]; const gfloat qua_thr = this_channels_uno_one_bptr[ ( 2 + 3 * pixels_per_buffer_row ) * channels ]; const gfloat qua_fou = this_channels_uno_one_bptr[ ( 3 + 3 * pixels_per_buffer_row ) * channels ]; /* * Computation of the YAFR correction: * * Basically, if two consecutive pixel value differences have the * same sign, the smallest one (in absolute value) is taken to be * the corresponding slope. If they don't have the same sign, the * corresponding slope is set to 0. * * Four such pairs (vertical and horizontal) of slopes need to be * computed, one pair for each of the pixels which potentially * overlap the unit area centered at the interpolation point. */ /* * Beginning of the computation of the "up" horizontal slopes: */ const gfloat prem__up = dos_two - dos_one; const gfloat deux__up = dos_thr - dos_two; const gfloat troi__up = dos_fou - dos_thr; /* * "down" horizontal slopes: */ const gfloat prem_dow = tre_two - tre_one; const gfloat deux_dow = tre_thr - tre_two; const gfloat troi_dow = tre_fou - tre_thr; /* * "left" vertical slopes: */ const gfloat prem_left = dos_two - uno_two; const gfloat deux_left = tre_two - dos_two; const gfloat troi_left = qua_two - tre_two; /* * "right" vertical slopes: */ const gfloat prem_rite = dos_thr - uno_thr; const gfloat deux_rite = tre_thr - dos_thr; const gfloat troi_rite = qua_thr - tre_thr; /* * Back to "up": */ const gfloat prem__up_squared = prem__up * prem__up; const gfloat deux__up_squared = deux__up * deux__up; const gfloat troi__up_squared = troi__up * troi__up; /* * Back to "down": */ const gfloat prem_dow_squared = prem_dow * prem_dow; const gfloat deux_dow_squared = deux_dow * deux_dow; const gfloat troi_dow_squared = troi_dow * troi_dow; /* * Back to "left": */ const gfloat prem_left_squared = prem_left * prem_left; const gfloat deux_left_squared = deux_left * deux_left; const gfloat troi_left_squared = troi_left * troi_left; /* * Back to "right": */ const gfloat prem_rite_squared = prem_rite * prem_rite; const gfloat deux_rite_squared = deux_rite * deux_rite; const gfloat troi_rite_squared = troi_rite * troi_rite; /* * "up": */ const gfloat prem__up_times_deux__up = prem__up * deux__up; const gfloat deux__up_times_troi__up = deux__up * troi__up; /* * "down": */ const gfloat prem_dow_times_deux_dow = prem_dow * deux_dow; const gfloat deux_dow_times_troi_dow = deux_dow * troi_dow; /* * "left": */ const gfloat prem_left_times_deux_left = prem_left * deux_left; const gfloat deux_left_times_troi_left = deux_left * troi_left; /* * "right": */ const gfloat prem_rite_times_deux_rite = prem_rite * deux_rite; const gfloat deux_rite_times_troi_rite = deux_rite * troi_rite; /* * Branching parts of the computation of the YAFR correction (could * be unbranched using arithmetic branching and C99 math intrinsics, * although the compiler may be smart enough to remove the branching * on its own): */ /* * "up": */ const gfloat prem__up_vs_deux__up = prem__up_squared < deux__up_squared ? prem__up : deux__up; const gfloat deux__up_vs_troi__up = deux__up_squared < troi__up_squared ? deux__up : troi__up; /* * "down": */ const gfloat prem_dow_vs_deux_dow = prem_dow_squared < deux_dow_squared ? prem_dow : deux_dow; const gfloat deux_dow_vs_troi_dow = deux_dow_squared < troi_dow_squared ? deux_dow : troi_dow; /* * "left": */ const gfloat prem_left_vs_deux_left = prem_left_squared < deux_left_squared ? prem_left : deux_left; const gfloat deux_left_vs_troi_left = deux_left_squared < troi_left_squared ? deux_left : troi_left; /* * "right": */ const gfloat prem_rite_vs_deux_rite = prem_rite_squared < deux_rite_squared ? prem_rite : deux_rite; const gfloat deux_rite_vs_troi_rite = deux_rite_squared < troi_rite_squared ? deux_rite : troi_rite; /* * The YAFR correction computation will resume after the computation * of the Catmull-Rom baseline. */ /* * Catmull-Rom baseline contribution: */ const gfloat catmull_rom = cardinal_uno * ( cardinal_one * uno_one + cardinal_two * uno_two + cardinal_thr * uno_thr + cardinal_fou * uno_fou ) + cardinal_dos * ( cardinal_one * dos_one + cardinal_two * dos_two + cardinal_thr * dos_thr + cardinal_fou * dos_fou ) + cardinal_tre * ( cardinal_one * tre_one + cardinal_two * tre_two + cardinal_thr * tre_thr + cardinal_fou * tre_fou ) + cardinal_qua * ( cardinal_one * qua_one + cardinal_two * qua_two + cardinal_thr * qua_thr + cardinal_fou * qua_fou ); /* * Computation of the YAFR slopes. */ /* * "up": */ const gfloat mx_left__up = prem__up_times_deux__up < 0.f ? 0.f : prem__up_vs_deux__up; const gfloat mx_rite__up = deux__up_times_troi__up < 0.f ? 0.f : deux__up_vs_troi__up; /* * "down": */ const gfloat mx_left_dow = prem_dow_times_deux_dow < 0.f ? 0.f : prem_dow_vs_deux_dow; const gfloat mx_rite_dow = deux_dow_times_troi_dow < 0.f ? 0.f : deux_dow_vs_troi_dow; /* * "left": */ const gfloat my_left__up = prem_left_times_deux_left < 0.f ? 0.f : prem_left_vs_deux_left; const gfloat my_left_dow = deux_left_times_troi_left < 0.f ? 0.f : deux_left_vs_troi_left; /* * "down": */ const gfloat my_rite__up = prem_rite_times_deux_rite < 0.f ? 0.f : prem_rite_vs_deux_rite; const gfloat my_rite_dow = deux_rite_times_troi_rite < 0.f ? 0.f : deux_rite_vs_troi_rite; /* * Assemble the unweighted YAFR correction: */ const gfloat unweighted_yafr_correction = left_width_times_up__height_times_rite_width * ( mx_left__up - mx_rite__up ) + left_width_times_dow_height_times_rite_width * ( mx_left_dow - mx_rite_dow ) + left_width_times_up__height_times_dow_height * ( my_left__up - my_left_dow ) + rite_width_times_up__height_times_dow_height * ( my_rite__up - my_rite_dow ); /* * Add the Catmull-Rom baseline and the weighted YAFR correction: */ const gfloat newval = sharpening_over_two * unweighted_yafr_correction + catmull_rom; return newval; } static void gegl_sampler_yafr_get ( GeglSampler *self, const gdouble x, const gdouble y, void *output) { /* * Note: The computation is structured to foster software * pipelining. */ /* * x is understood to increase from left to right, y, from top to * bottom. Consequently, ix and iy are the indices of the pixel * located at or to the left, and at or above. the sampling point. * * floor is used to make sure that the transition through 0 is * smooth. If it is known that negative x and y will never be used, * cast (which truncates) could be used instead. */ const gint ix = floorf (x); const gint iy = floorf (y); /* * Pointer to enlarged input stencil values: */ const gfloat* restrict sampler_bptr = gegl_sampler_get_ptr (self, ix, iy); /* * Each (channel's) output pixel value is obtained by combining four * "pieces," each piece corresponding to the set of points which are * closest to the four pixels closest to the (x,y) position, pixel * positions which have coordinates and labels as follows: * * (ix,iy) (ix+1,iy) * =left__up =rite__up * * <- (x,y) is somewhere in the convex hull * * (ix,iy+1) (ix+1,iy+1) * =left_dow =rite_dow */ /* * rite_width is the width of the overlaps of the unit averaging box * (which is centered at the position where an interpolated value is * desired), with the closest unit pixel areas to the right. * * left_width is the width of the overlaps of the unit averaging box * (which is centered at the position where an interpolated value is * desired), with the closest unit pixel areas to the left. */ const gfloat rite_width = x - ix; const gfloat dow_height = y - iy; const gfloat left_width = 1.f - rite_width; const gfloat up__height = 1.f - dow_height; /* * .5*rite_width is the x-coordinate of the center of the overlap of * the averaging box with the left pixel areas, relative to the * position of the centers of the left pixels. * * -.5*left_width is the x-coordinate ... right pixel areas, * relative to ... the right pixels. * * .5*dow_height is the y-coordinate of the center of the overlap * of the averaging box with the up pixel areas, relative to the * position of the centers of the up pixels. * * -.5*up__height is the y-coordinate ... down pixel areas, relative * to ... the down pixels. */ const gfloat left_width_times_rite_width = left_width * rite_width; const gfloat up__height_times_dow_height = up__height * dow_height; const gfloat cardinal_two = left_width_times_rite_width * ( -1.5f * rite_width + 1.f ) + left_width; const gfloat cardinal_dos = up__height_times_dow_height * ( -1.5f * dow_height + 1.f ) + up__height; const gfloat minus_half_left_width_times_rite_width = -.5f * left_width_times_rite_width; const gfloat minus_half_up__height_times_dow_height = -.5f * up__height_times_dow_height; const gfloat left_width_times_up__height_times_rite_width = left_width_times_rite_width * up__height; const gfloat left_width_times_dow_height_times_rite_width = left_width_times_rite_width * dow_height; const gfloat left_width_times_up__height_times_dow_height = up__height_times_dow_height * left_width; const gfloat rite_width_times_up__height_times_dow_height = up__height_times_dow_height * rite_width; const gfloat cardinal_one = minus_half_left_width_times_rite_width * left_width; const gfloat cardinal_uno = minus_half_up__height_times_dow_height * up__height; const gfloat cardinal_fou = minus_half_left_width_times_rite_width * rite_width; const gfloat cardinal_qua = minus_half_up__height_times_dow_height * dow_height; const gfloat cardinal_thr = 1.f - ( minus_half_left_width_times_rite_width + cardinal_two ); const gfloat cardinal_tre = 1.f - ( minus_half_up__height_times_dow_height + cardinal_dos ); /* * The newval array will contain the four (one per channel) * computed resampled values: */ gfloat newval[4]; /* * Set the tile pointer to the first relevant value. Since the * pointer initially points to dos_two, we need to rewind it one * tile row, then go back one additional pixel. */ const gint channels = 4; const gint pixels_per_buffer_row = 64; sampler_bptr -= ( pixels_per_buffer_row + 1 ) * channels; newval[0] = catrom_yafr (cardinal_one, cardinal_two, cardinal_thr, cardinal_fou, cardinal_uno, cardinal_dos, cardinal_tre, cardinal_qua, left_width_times_up__height_times_rite_width, left_width_times_dow_height_times_rite_width, left_width_times_up__height_times_dow_height, rite_width_times_up__height_times_dow_height, sampler_bptr++); newval[1] = catrom_yafr (cardinal_one, cardinal_two, cardinal_thr, cardinal_fou, cardinal_uno, cardinal_dos, cardinal_tre, cardinal_qua, left_width_times_up__height_times_rite_width, left_width_times_dow_height_times_rite_width, left_width_times_up__height_times_dow_height, rite_width_times_up__height_times_dow_height, sampler_bptr++); newval[2] = catrom_yafr (cardinal_one, cardinal_two, cardinal_thr, cardinal_fou, cardinal_uno, cardinal_dos, cardinal_tre, cardinal_qua, left_width_times_up__height_times_rite_width, left_width_times_dow_height_times_rite_width, left_width_times_up__height_times_dow_height, rite_width_times_up__height_times_dow_height, sampler_bptr++); newval[3] = catrom_yafr (cardinal_one, cardinal_two, cardinal_thr, cardinal_fou, cardinal_uno, cardinal_dos, cardinal_tre, cardinal_qua, left_width_times_up__height_times_rite_width, left_width_times_dow_height_times_rite_width, left_width_times_up__height_times_dow_height, rite_width_times_up__height_times_dow_height, sampler_bptr); /* * Ship out newval: */ babl_process (babl_fish (self->interpolate_format, self->format), newval, output, 1); } static void set_property ( GObject *gobject, guint property_id, const GValue *value, GParamSpec *pspec) { G_OBJECT_WARN_INVALID_PROPERTY_ID (gobject, property_id, pspec); } static void get_property (GObject *gobject, guint property_id, GValue *value, GParamSpec *pspec) { G_OBJECT_WARN_INVALID_PROPERTY_ID (gobject, property_id, pspec); }