/* @(#) Convolve an image with a DOUBLEMASK. Image can have any number of bands, * @(#) any non-complex type. Output is IM_BANDFMT_FLOAT for all non-complex inputs * @(#) except IM_BANDFMT_DOUBLE, which gives IM_BANDFMT_DOUBLE. * @(#) Separable mask of sizes 1xN or Nx1 * @(#) * @(#) int im_convsepf( in, out, mask ) * @(#) IMAGE *in, *out; * @(#) DOUBLEMASK *mask; details in mask.h * @(#) * @(#) Returns either 0 (sucess) or -1 (fail) * @(#) Picture can have any number of channels (max 64). * * Copyright: 1990, N. Dessipris. * * Author: Nicos Dessipris * Written on: 29/04/1991 * Modified on: 29/4/93 K.Martinez for sys5 * 9/3/01 JC * - rewritten using im_conv() * 7/4/04 * - now uses im_embed() with edge stretching on the input, not * the output * - sets Xoffset / Yoffset */ /* This file is part of VIPS. VIPS is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk */ #ifdef HAVE_CONFIG_H #include #endif /*HAVE_CONFIG_H*/ #include #include #include #include #include #include #ifdef WITH_DMALLOC #include #endif /*WITH_DMALLOC*/ /* Our parameters ... we take a copy of the mask argument. */ typedef struct { IMAGE *in; IMAGE *out; DOUBLEMASK *mask; /* Copy of mask arg */ int size; /* N for our 1xN or Nx1 mask */ int scale; /* Our scale ... we have to ^2 mask->scale */ } Conv; /* End of evaluation. */ static int conv_destroy( Conv *conv ) { if( conv->mask ) { (void) im_free_dmask( conv->mask ); conv->mask = NULL; } return( 0 ); } static Conv * conv_new( IMAGE *in, IMAGE *out, DOUBLEMASK *mask ) { Conv *conv = IM_NEW( out, Conv ); if( !conv ) return( NULL ); conv->in = in; conv->out = out; conv->mask = NULL; conv->size = mask->xsize * mask->ysize; conv->scale = mask->scale * mask->scale; if( im_add_close_callback( out, (im_callback_fn) conv_destroy, conv, NULL ) || !(conv->mask = im_dup_dmask( mask, "conv_mask" )) ) return( NULL ); return( conv ); } /* Our sequence value. */ typedef struct { Conv *conv; REGION *ir; /* Input region */ PEL *sum; /* Line buffer */ } ConvSequence; /* Free a sequence value. */ static int stop_conv( ConvSequence *seq, IMAGE *in, Conv *conv ) { IM_FREEF( im_region_free, seq->ir ); return( 0 ); } /* Convolution start function. */ static void * start_conv( IMAGE *out, IMAGE *in, Conv *conv ) { ConvSequence *seq = IM_NEW( out, ConvSequence ); if( !seq ) return( NULL ); /* Init! */ seq->conv = conv; seq->ir = NULL; seq->sum = NULL; /* Attach region and arrays. */ seq->ir = im_region_create( in ); if( im_isint( conv->out ) ) seq->sum = (PEL *) IM_ARRAY( out, IM_IMAGE_N_ELEMENTS( in ), int ); else seq->sum = (PEL *) IM_ARRAY( out, IM_IMAGE_N_ELEMENTS( in ), double ); if( !seq->ir || !seq->sum ) { stop_conv( seq, in, conv ); return( NULL ); } return( (void *) seq ); } /* What we do for every point in the mask, for each pixel. */ #define VERTICAL_CONV { z -= 1; li -= lskip; sum += coeff[z] * vfrom[li]; } #define HORIZONTAL_CONV { z -= 1; li -= bands; sum += coeff[z] * hfrom[li]; } #define CONV_FLOAT( ITYPE, OTYPE ) { \ ITYPE *vfrom; \ double *vto; \ double *hfrom; \ OTYPE *hto; \ \ /* Convolve to sum array. We convolve the full width of \ * this input line. \ */ \ vfrom = (ITYPE *) IM_REGION_ADDR( ir, le, y ); \ vto = (double *) seq->sum; \ for( x = 0; x < isz; x++ ) { \ double sum; \ \ z = conv->size; \ li = lskip * z; \ sum = 0; \ \ IM_UNROLL( z, VERTICAL_CONV ); \ \ vto[x] = sum; \ vfrom += 1; \ } \ \ /* Convolve sums to output. \ */ \ hfrom = (double *) seq->sum; \ hto = (OTYPE *) IM_REGION_ADDR( or, le, y ); \ for( x = 0; x < osz; x++ ) { \ double sum; \ \ z = conv->size; \ li = bands * z; \ sum = 0; \ \ IM_UNROLL( z, HORIZONTAL_CONV ); \ \ sum = (sum / conv->scale) + mask->offset; \ \ hto[x] = sum; \ hfrom += 1; \ } \ } /* Convolve! */ static int gen_conv( REGION *or, ConvSequence *seq, IMAGE *in, Conv *conv ) { REGION *ir = seq->ir; DOUBLEMASK *mask = conv->mask; double *coeff = conv->mask->coeff; int bands = in->Bands; Rect *r = &or->valid; int le = r->left; int to = r->top; int bo = IM_RECT_BOTTOM(r); int osz = IM_REGION_N_ELEMENTS( or ); Rect s; int lskip; int isz; int x, y, z, li; /* Prepare the section of the input image we need. A little larger * than the section of the output image we are producing. */ s = *r; s.width += conv->size - 1; s.height += conv->size - 1; if( im_prepare( ir, &s ) ) return( -1 ); lskip = IM_REGION_LSKIP( ir ) / IM_IMAGE_SIZEOF_ELEMENT( in ); isz = IM_REGION_N_ELEMENTS( ir ); for( y = to; y < bo; y++ ) { switch( in->BandFmt ) { case IM_BANDFMT_UCHAR: CONV_FLOAT( unsigned char, float ); break; case IM_BANDFMT_CHAR: CONV_FLOAT( signed char, float ); break; case IM_BANDFMT_USHORT: CONV_FLOAT( unsigned short, float ); break; case IM_BANDFMT_SHORT: CONV_FLOAT( signed short, float ); break; case IM_BANDFMT_UINT: CONV_FLOAT( unsigned int, float ); break; case IM_BANDFMT_INT: CONV_FLOAT( signed int, float ); break; case IM_BANDFMT_FLOAT: CONV_FLOAT( float, float ); break; case IM_BANDFMT_DOUBLE: CONV_FLOAT( double, double ); break; default: assert( 0 ); } } return( 0 ); } int im_convsepf_raw( IMAGE *in, IMAGE *out, DOUBLEMASK *mask ) { Conv *conv; /* Check parameters. */ if( !in || in->Coding != IM_CODING_NONE || im_iscomplex( in ) ) { im_error( "im_convsepf", _( "non-complex uncoded only" ) ); return( -1 ); } if( !mask || mask->xsize > 1000 || mask->ysize > 1000 || mask->xsize <= 0 || mask->ysize <= 0 || !mask->coeff || mask->scale == 0 ) { im_error( "im_convsepf", _( "bad mask parameters" ) ); return( -1 ); } if( mask->xsize != 1 && mask->ysize != 1 ) { im_error( "im_convsepf", _( "expect 1xN or Nx1 input mask" ) ); return( -1 ); } if( im_piocheck( in, out ) ) return( -1 ); if( !(conv = conv_new( in, out, mask )) ) return( -1 ); /* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output * would be 1x1. */ if( im_cp_desc( out, in ) ) return( -1 ); if( im_isint( in ) ) { out->Bbits = IM_BBITS_FLOAT; out->BandFmt = IM_BANDFMT_FLOAT; } out->Xsize -= conv->size - 1; out->Ysize -= conv->size - 1; if( out->Xsize <= 0 || out->Ysize <= 0 ) { im_error( "im_convsepf", _( "image too small for mask" ) ); return( -1 ); } /* SMALLTILE seems fastest. */ if( im_demand_hint( out, IM_SMALLTILE, in, NULL ) || im_generate( out, start_conv, gen_conv, stop_conv, in, conv ) ) return( -1 ); out->Xoffset = -conv->size / 2; out->Yoffset = -conv->size / 2; return( 0 ); } /* The above, with a border to make out the same size as in. */ int im_convsepf( IMAGE *in, IMAGE *out, DOUBLEMASK *mask ) { IMAGE *t1 = im_open_local( out, "im_convsepf intermediate", "p" ); int size = mask->xsize * mask->ysize; if( !t1 || im_embed( in, t1, 1, size / 2, size / 2, in->Xsize + size - 1, in->Ysize + size - 1 ) || im_convsepf_raw( t1, out, mask ) ) return( -1 ); out->Xoffset = 0; out->Yoffset = 0; return( 0 ); }