libvips/libvips/arithmetic/arithmetic.c

916 lines
24 KiB
C

/* base class for all arithmetic operations
*
* properties:
* - one output image, one or more inputs
* - cast input images to match
* - output is large enough to hold output values (value preserving)
* - point-to-point operations (ie. each pixel depends only on the
* corresponding pixel in the input)
* - LUT-able: ie. arithmetic (image) can be exactly replaced by
* maplut (image, arithmetic (lut)) for 8/16 bit int images
*/
/*
Copyright (C) 1991-2005 The National Gallery
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/internal.h>
#include "parithmetic.h"
/**
* SECTION: arithmetic
* @short_description: pixel arithmetic, trig, log, statistics
* @stability: Stable
* @include: vips/vips.h
*
* These operations perform pixel arithmetic, that is, they perform an
* arithmetic operation, such as addition, on every pixel in an image or a
* pair of images. All (except in a few cases noted below) will work with
* images of any type or any mixture of types, of any size and of any number
* of bands.
*
* For binary operations, if the number of bands differs, one of the images
* must have one band. In this case, an n-band image is formed from the
* one-band image by joining n copies of the one-band image together, and then
* the two n-band images are operated upon.
*
* In the same way, for operations that take an array constant, such as
* vips_remainder_const(), you can mix single-element arrays or single-band
* images freely.
*
* Arithmetic operations try to preserve precision by increasing the number of
* bits in the output image when necessary. Generally, this follows the ANSI C
* conventions for type promotion, so multiplying two
* #VIPS_FORMAT_UCHAR images together, for example, produces a
* #VIPS_FORMAT_USHORT image, and taking the vips_cos() of a
* #VIPS_FORMAT_USHORT image produces #VIPS_FORMAT_FLOAT image.
*
* After processing, use vips_cast() and friends to take then format back down
* again. vips_cast_uchar(), for example, will cast any image down to 8-bit
* unsigned.
*
* Images have an *interpretation*: a meaning for the pixel values. With
* #VIPS_INTERPRETATION_sRGB, for example, the first three bands will be
* interpreted (for example, by a saver like vips_jpegsave()) as R, G and B,
* with values in 0 - 255, and any fourth band will be interpreted as an
* alpha channel.
*
* After arithmetic, you may wish to change the interpretation (for example to
* save as 16-bit PNG). Use vips_copy() to change the interpretation without
* changing pixels.
*
* For binary arithmetic operations, type promotion occurs in two stages.
* First, the two input images are cast up to the smallest common format,
* that is, the type with the smallest range that can represent the full
* range of both inputs. This conversion can be represented as a table:
*
* <table>
* <title>Smallest common format</title>
* <tgroup cols='10' align='left' colsep='1' rowsep='1'>
* <thead>
* <row>
* <entry>@in2/@in1</entry>
* <entry>uchar</entry>
* <entry>char</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* </thead>
* <tbody>
* <row>
* <entry>uchar</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>char</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>ushort</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>uint</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* </row>
* </tbody>
* </tgroup>
* </table>
*
* In the second stage, the operation is performed between the two identical
* types to form the output. The details vary between operations, but
* generally the principle is that the output type should be large enough to
* represent the whole range of possible values, except that int never becomes
* float.
*/
G_DEFINE_ABSTRACT_TYPE( VipsArithmetic, vips_arithmetic, VIPS_TYPE_OPERATION );
/* Save a bit of typing.
*/
#define UC VIPS_FORMAT_UCHAR
#define C VIPS_FORMAT_CHAR
#define US VIPS_FORMAT_USHORT
#define S VIPS_FORMAT_SHORT
#define UI VIPS_FORMAT_UINT
#define I VIPS_FORMAT_INT
#define F VIPS_FORMAT_FLOAT
#define X VIPS_FORMAT_COMPLEX
#define D VIPS_FORMAT_DOUBLE
#define DX VIPS_FORMAT_DPCOMPLEX
/* For two integer types, the "largest", ie. one which can represent the
* full range of both.
*/
static VipsBandFormat format_largest[6][6] = {
/* UC C US S UI I */
/* UC */ { UC, S, US, S, UI, I },
/* C */ { S, C, I, S, I, I },
/* US */ { US, I, US, I, UI, I },
/* S */ { S, S, I, S, I, I },
/* UI */ { UI, I, UI, I, UI, I },
/* I */ { I, I, I, I, I, I }
};
/* For two formats, find one which can represent the full range of both.
*/
static VipsBandFormat
vips_format_common( VipsBandFormat a, VipsBandFormat b )
{
if( vips_band_format_iscomplex( a ) ||
vips_band_format_iscomplex( b ) ) {
if( a == VIPS_FORMAT_DPCOMPLEX ||
b == VIPS_FORMAT_DPCOMPLEX )
return( VIPS_FORMAT_DPCOMPLEX );
else
return( VIPS_FORMAT_COMPLEX );
}
else if( vips_band_format_isfloat( a ) ||
vips_band_format_isfloat( b ) ) {
if( a == VIPS_FORMAT_DOUBLE ||
b == VIPS_FORMAT_DOUBLE )
return( VIPS_FORMAT_DOUBLE );
else
return( VIPS_FORMAT_FLOAT );
}
else
return( format_largest[a][b] );
}
int
vips__formatalike_vec( VipsImage **in, VipsImage **out, int n )
{
int i;
VipsBandFormat format;
g_assert( n >= 1 );
format = in[0]->BandFmt;
for( i = 1; i < n; i++ )
format = vips_format_common( format, in[i]->BandFmt );
for( i = 0; i < n; i++ )
if( in[i]->BandFmt == format ) {
/* Already in the right format ... just copy the image
* pointer and add a ref.
*/
out[i] = in[i];
g_object_ref( in[i] );
}
else {
if( vips_cast( in[i], &out[i], format, NULL ) )
return( -1 );
}
return( 0 );
}
int
vips__sizealike_vec( VipsImage **in, VipsImage **out, int n )
{
int i;
int width_max;
int height_max;
g_assert( n >= 1 );
width_max = in[0]->Xsize;
height_max = in[0]->Ysize;
for( i = 1; i < n; i++ ) {
width_max = VIPS_MAX( width_max, in[i]->Xsize );
height_max = VIPS_MAX( height_max, in[i]->Ysize );
}
for( i = 0; i < n; i++ )
if( in[i]->Xsize == width_max &&
in[i]->Ysize == height_max ) {
/* Already the right size ... just copy the image
* pointer and add a ref.
*/
out[i] = in[i];
g_object_ref( in[i] );
}
else {
if( vips_embed( in[i], &out[i],
0, 0, width_max, height_max, NULL ) )
return( -1 );
}
return( 0 );
}
/* Make an n-band image. Input 1 or n bands.
*/
int
vips__bandup( const char *domain, VipsImage *in, VipsImage **out, int n )
{
VipsImage **bands;
int i;
int result;
if( in->Bands == n )
return( vips_copy( in, out, NULL ) );
if( in->Bands != 1 ) {
vips_error( domain, _( "not one band or %d bands" ), n );
return( -1 );
}
if( n > VIPS_MAX_COORD ||
n < 1 ) {
vips_error( domain, "%s", _( "bad bands" ) );
return( -1 );
}
if( !(bands = VIPS_ARRAY( NULL, n, VipsImage * )) )
return( -1 );
for( i = 0; i < n; i++ )
bands[i] = in;
result = vips_bandjoin( bands, out, n, NULL );
VIPS_FREE( bands );
return( result );
}
/* base_bands is the default minimum.
*
* Handy for example, if you have VipsLinear with
* a 3-element vector of constants and a 1-band input image, you need to cast
* the image up to three bands.
*/
int
vips__bandalike_vec( const char *domain,
VipsImage **in, VipsImage **out, int n, int base_bands )
{
int i;
int max_bands;
VipsInterpretation interpretation;
g_assert( n >= 1 );
/* We try to set the interpretation of the output images from the
* interpretation of the n-band input. For example, if we are matching
* a set of BW images to an RGB image, we want the BW images to be
* tagged as RGB.
*/
max_bands = base_bands;
interpretation = VIPS_INTERPRETATION_ERROR;
for( i = 0; i < n; i++ ) {
/* >= so we can pick up interpretation if base_bands is equal
* to the number of bands of the largest image.
*/
if( in[i]->Bands >= max_bands ) {
max_bands = in[i]->Bands;
interpretation = in[i]->Type;
}
}
for( i = 0; i < n; i++ )
if( in[i]->Bands == max_bands ) {
/* Already the right number of bands ... just copy the
* image pointer and add a ref.
*/
out[i] = in[i];
g_object_ref( in[i] );
}
else {
if( vips__bandup( domain, in[i], &out[i], max_bands ) )
return( -1 );
if( interpretation != VIPS_INTERPRETATION_ERROR )
out[i]->Type = interpretation;
}
return( 0 );
}
int
vips__formatalike( VipsImage *in1, VipsImage *in2,
VipsImage **out1, VipsImage **out2 )
{
VipsImage *in[2];
VipsImage *out[2];
in[0] = in1;
in[1] = in2;
if( vips__formatalike_vec( in, out, 2 ) )
return( -1 );
*out1 = out[0];
*out2 = out[1];
return( 0 );
}
int
vips__sizealike( VipsImage *in1, VipsImage *in2,
VipsImage **out1, VipsImage **out2 )
{
VipsImage *in[2];
VipsImage *out[2];
in[0] = in1;
in[1] = in2;
if( vips__sizealike_vec( in, out, 2 ) )
return( -1 );
*out1 = out[0];
*out2 = out[1];
return( 0 );
}
int
vips__bandalike( const char *domain,
VipsImage *in1, VipsImage *in2, VipsImage **out1, VipsImage **out2 )
{
VipsImage *in[2];
VipsImage *out[2];
in[0] = in1;
in[1] = in2;
if( vips__bandalike_vec( domain, in, out, 2, 1 ) )
return( -1 );
*out1 = out[0];
*out2 = out[1];
return( 0 );
}
/* Our sequence value.
*/
typedef struct {
VipsArithmetic *arithmetic;
/* Set of input regions.
*/
VipsRegion **ir;
/* For each input, an input pointer.
*/
VipsPel **p;
} VipsArithmeticSequence;
static int
vips_arithmetic_stop( void *vseq, void *a, void *b )
{
VipsArithmeticSequence *seq = (VipsArithmeticSequence *) vseq;
if( seq->ir ) {
int i;
for( i = 0; seq->ir[i]; i++ )
VIPS_UNREF( seq->ir[i] );
VIPS_FREE( seq->ir );
}
VIPS_FREE( seq->p );
VIPS_FREE( seq );
return( 0 );
}
static void *
vips_arithmetic_start( VipsImage *out, void *a, void *b )
{
VipsImage **in = (VipsImage **) a;
VipsArithmetic *arithmetic = (VipsArithmetic *) b;
VipsArithmeticSequence *seq;
int i, n;
if( !(seq = VIPS_NEW( NULL, VipsArithmeticSequence )) )
return( NULL );
seq->arithmetic = arithmetic;
seq->ir = NULL;
seq->p = NULL;
/* How many images?
*/
for( n = 0; in[n]; n++ )
;
/* Alocate space for region array.
*/
if( !(seq->ir = VIPS_ARRAY( NULL, n + 1, VipsRegion * )) ) {
vips_arithmetic_stop( seq, NULL, NULL );
return( NULL );
}
/* Create a set of regions.
*/
for( i = 0; i < n; i++ )
if( !(seq->ir[i] = vips_region_new( in[i] )) ) {
vips_arithmetic_stop( seq, NULL, NULL );
return( NULL );
}
seq->ir[n] = NULL;
/* Input pointers.
*/
if( !(seq->p = VIPS_ARRAY( NULL, n + 1, VipsPel * )) ) {
vips_arithmetic_stop( seq, NULL, NULL );
return( NULL );
}
return( seq );
}
static int
vips_arithmetic_gen( VipsRegion *or,
void *vseq, void *a, void *b, gboolean *stop )
{
VipsArithmeticSequence *seq = (VipsArithmeticSequence *) vseq;
VipsRegion **ir = seq->ir;
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( b );
VipsArithmeticClass *class = VIPS_ARITHMETIC_GET_CLASS( arithmetic );
VipsRect *r = &or->valid;
VipsPel *q;
int i, y;
/* Prepare all input regions and make buffer pointers.
*/
if( vips_reorder_prepare_many( or->im, ir, r ) )
return( -1 );
for( i = 0; ir[i]; i++ )
seq->p[i] = (VipsPel *)
VIPS_REGION_ADDR( ir[i], r->left, r->top );
seq->p[i] = NULL;
q = (VipsPel *) VIPS_REGION_ADDR( or, r->left, r->top );
VIPS_GATE_START( "vips_arithmetic_gen: work" );
for( y = 0; y < r->height; y++ ) {
class->process_line( arithmetic, q, seq->p, r->width );
for( i = 0; ir[i]; i++ )
seq->p[i] += VIPS_REGION_LSKIP( ir[i] );
q += VIPS_REGION_LSKIP( or );
}
VIPS_GATE_STOP( "vips_arithmetic_gen: work" );
VIPS_COUNT_PIXELS( or, VIPS_OBJECT_CLASS( class )->nickname );
return( 0 );
}
static int
vips_arithmetic_build( VipsObject *object )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( object );
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( object );
VipsArithmeticClass *aclass = VIPS_ARITHMETIC_GET_CLASS( arithmetic );
VipsImage **decode;
VipsImage **format;
VipsImage **band;
VipsImage **size;
int i;
#ifdef DEBUG
printf( "vips_arithmetic_build: " );
vips_object_print_name( object );
printf( "\n" );
#endif /*DEBUG*/
if( VIPS_OBJECT_CLASS( vips_arithmetic_parent_class )->
build( object ) )
return( -1 );
g_object_set( arithmetic, "out", vips_image_new(), NULL );
decode = (VipsImage **)
vips_object_local_array( object, arithmetic->n );
format = (VipsImage **)
vips_object_local_array( object, arithmetic->n );
band = (VipsImage **)
vips_object_local_array( object, arithmetic->n );
size = (VipsImage **)
vips_object_local_array( object, arithmetic->n );
/* Decode RAD/LABQ etc.
*/
for( i = 0; i < arithmetic->n; i++ )
if( vips_image_decode( arithmetic->in[i], &decode[i] ) )
return( -1 );
/* Cast our input images up to a common format, bands and size.
*/
if( vips__formatalike_vec( decode, format, arithmetic->n ) ||
vips__bandalike_vec( class->nickname,
format, band, arithmetic->n, arithmetic->base_bands ) ||
vips__sizealike_vec( band, size, arithmetic->n ) )
return( -1 );
/* Keep a copy of the processed images here for subclasses.
*/
arithmetic->ready = size;
if( vips_image_pipeline_array( arithmetic->out,
VIPS_DEMAND_STYLE_THINSTRIP, arithmetic->ready ) )
return( -1 );
arithmetic->out->Bands = arithmetic->ready[0]->Bands;
if( arithmetic->format != VIPS_FORMAT_NOTSET )
arithmetic->out->BandFmt = arithmetic->format;
else
arithmetic->out->BandFmt =
aclass->format_table[arithmetic->ready[0]->BandFmt];
if( vips_image_generate( arithmetic->out,
vips_arithmetic_start,
vips_arithmetic_gen,
vips_arithmetic_stop,
arithmetic->ready, arithmetic ) )
return( -1 );
return( 0 );
}
static void
vips_arithmetic_class_init( VipsArithmeticClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *vobject_class = VIPS_OBJECT_CLASS( class );
VipsOperationClass *operation_class = VIPS_OPERATION_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
vobject_class->nickname = "arithmetic";
vobject_class->description = _( "arithmetic operations" );
vobject_class->build = vips_arithmetic_build;
operation_class->flags = VIPS_OPERATION_SEQUENTIAL;
VIPS_ARG_IMAGE( class, "out", 100,
_( "Output" ),
_( "Output image" ),
VIPS_ARGUMENT_REQUIRED_OUTPUT,
G_STRUCT_OFFSET( VipsArithmetic, out ) );
}
static void
vips_arithmetic_init( VipsArithmetic *arithmetic )
{
arithmetic->base_bands = 1;
arithmetic->format = VIPS_FORMAT_NOTSET;
}
void
vips_arithmetic_set_format_table( VipsArithmeticClass *class,
const VipsBandFormat *format_table )
{
g_assert( !class->format_table );
class->format_table = format_table;
}
void
vips_arithmetic_set_vector( VipsArithmeticClass *class )
{
int i;
g_assert( class->format_table );
for( i = 0; i < VIPS_FORMAT_LAST; i++ ) {
int isize = vips_format_sizeof( i );
int osize = vips_format_sizeof( (int) class->format_table[i] );
VipsVector *v;
v = vips_vector_new( "arithmetic", osize );
vips_vector_source_name( v, "s1", isize );
vips_vector_source_name( v, "s2", isize );
vips_vector_temporary( v, "t1", osize );
vips_vector_temporary( v, "t2", osize );
class->vectors[i] = v;
}
}
/* Get the stub for this program ... use _get_vector() to get the compiled
* code.
*/
VipsVector *
vips_arithmetic_get_program( VipsArithmeticClass *class, VipsBandFormat fmt )
{
g_assert( (int) fmt >= 0 && (int) fmt < VIPS_FORMAT_LAST );
g_assert( !class->vector_program[fmt] );
class->vector_program[fmt] = TRUE;
return( class->vectors[fmt] );
}
/* Get the compiled code for this type, if available.
*/
VipsVector *
vips_arithmetic_get_vector( VipsArithmeticClass *class, VipsBandFormat fmt )
{
g_assert( fmt >= 0 && fmt < VIPS_FORMAT_LAST );
if( !vips_vector_isenabled() ||
!class->vector_program[fmt] )
return( NULL );
return( class->vectors[fmt] );
}
void
vips_arithmetic_compile( VipsArithmeticClass *class )
{
int i;
g_assert( class->format_table );
for( i = 0; i < VIPS_FORMAT_LAST; i++ )
if( class->vector_program[i] &&
!vips_vector_compile( class->vectors[i] ) )
/* If compilation fails, turn off the vector for this
* type.
*/
class->vector_program[i] = FALSE;
#ifdef DEBUG
printf( "vips_arithmetic_compile: " );
for( i = 0; i < VIPS_FORMAT_LAST; i++ )
if( class->vector_program[i] )
printf( "%s ",
vips_enum_nick( VIPS_TYPE_BAND_FORMAT, i ) );
printf( "\n" );
#endif /*DEBUG*/
}
/* Called from iofuncs to init all operations in this dir. Use a plugin system
* instead?
*/
void
vips_arithmetic_operation_init( void )
{
extern GType vips_add_get_type( void );
extern GType vips_sum_get_type( void );
extern GType vips_subtract_get_type( void );
extern GType vips_multiply_get_type( void );
extern GType vips_divide_get_type( void );
extern GType vips_invert_get_type( void );
extern GType vips_avg_get_type( void );
extern GType vips_min_get_type( void );
extern GType vips_max_get_type( void );
extern GType vips_deviate_get_type( void );
extern GType vips_linear_get_type( void );
extern GType vips_math_get_type( void );
extern GType vips_abs_get_type( void );
extern GType vips_sign_get_type( void );
extern GType vips_stats_get_type( void );
extern GType vips_hist_find_get_type( void );
extern GType vips_hist_find_ndim_get_type( void );
extern GType vips_hist_find_indexed_get_type( void );
extern GType vips_hough_line_get_type( void );
extern GType vips_hough_circle_get_type( void );
extern GType vips_project_get_type( void );
extern GType vips_profile_get_type( void );
extern GType vips_measure_get_type( void );
extern GType vips_getpoint_get_type( void );
extern GType vips_round_get_type( void );
extern GType vips_relational_get_type( void );
extern GType vips_relational_const_get_type( void );
extern GType vips_remainder_get_type( void );
extern GType vips_remainder_const_get_type( void );
extern GType vips_boolean_get_type( void );
extern GType vips_boolean_const_get_type( void );
extern GType vips_math2_get_type( void );
extern GType vips_math2_const_get_type( void );
extern GType vips_complex_get_type( void );
extern GType vips_complex2_get_type( void );
extern GType vips_complexget_get_type( void );
extern GType vips_complexform_get_type( void );
extern GType vips_find_trim_get_type( void );
vips_add_get_type();
vips_sum_get_type();
vips_subtract_get_type();
vips_multiply_get_type();
vips_divide_get_type();
vips_invert_get_type();
vips_avg_get_type();
vips_min_get_type();
vips_max_get_type();
vips_deviate_get_type();
vips_linear_get_type();
vips_math_get_type();
vips_abs_get_type();
vips_sign_get_type();
vips_stats_get_type();
vips_hist_find_get_type();
vips_hist_find_ndim_get_type();
vips_hist_find_indexed_get_type();
vips_hough_line_get_type();
vips_hough_circle_get_type();
vips_project_get_type();
vips_profile_get_type();
vips_measure_get_type();
vips_getpoint_get_type();
vips_round_get_type();
vips_relational_get_type();
vips_relational_const_get_type();
vips_remainder_get_type();
vips_remainder_const_get_type();
vips_boolean_get_type();
vips_boolean_const_get_type();
vips_math2_get_type();
vips_math2_const_get_type();
vips_complex_get_type();
vips_complex2_get_type();
vips_complexget_get_type();
vips_complexform_get_type();
vips_find_trim_get_type();
}