libvips/libvips/arithmetic/linear.c

546 lines
13 KiB
C

/* im_lintra.c -- linear transform
*
* Copyright: 1990, N. Dessipris, based on im_powtra()
* Author: Nicos Dessipris
* Written on: 02/05/1990
* Modified on:
* 23/4/93 JC
* - adapted to work with partial images
* 1/7/93 JC
* - adapted for partial v2
* 7/10/94 JC
* - new IM_NEW()
* - more typedefs
* 9/2/95 JC
* - adapted for im_wrap...
* - operations on complex images now just transform the real channel
* 29/9/95 JC
* - complex was broken
* 15/4/97 JC
* - return(0) missing from generate, arrgh!
* 1/7/98 JC
* - im_lintra_vec added
* 3/8/02 JC
* - fall back to im_copy() for a == 1, b == 0
* 10/10/02 JC
* - auug, failing to multiply imag for complex! (thanks matt)
* 10/12/02 JC
* - removed im_copy() fallback ... meant that output format could change
* with value :-( very confusing
* 30/6/04
* - added 1 band image * n band vector case
* 8/12/06
* - add liboil support
* 9/9/09
* - gtkdoc comment, minor reformat
* 31/7/10
* - remove liboil
* 31/10/11
* - rework as a class
* - removed the 1-ary constant path, no faster
* 30/11/13
* - 1ary is back, faster with gcc 4.8
* 14/1/14
* - add uchar output option
* 30/9/17
* - squash constants with all elements equal so we use 1ary path more
* often
*/
/*
Copyright (C) 1991-2005 The National Gallery
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vips/vips.h>
#include "unary.h"
typedef struct _VipsLinear {
VipsUnary parent_instance;
/* Our constants: multiply by a, add b.
*/
VipsArea *a;
VipsArea *b;
/* uchar output.
*/
gboolean uchar;
/* Our constants expanded to match arith->ready in size.
*/
int n;
double *a_ready;
double *b_ready;
} VipsLinear;
typedef VipsUnaryClass VipsLinearClass;
G_DEFINE_TYPE( VipsLinear, vips_linear, VIPS_TYPE_UNARY );
static int
vips_linear_build( VipsObject *object )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( object );
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( object );
VipsUnary *unary = (VipsUnary *) object;
VipsLinear *linear = (VipsLinear *) object;
int i;
/* If we have a three-element vector, we need to bandup the image to
* match.
*/
linear->n = 1;
if( linear->a )
linear->n = VIPS_MAX( linear->n, linear->a->n );
if( linear->b )
linear->n = VIPS_MAX( linear->n, linear->b->n );
if( unary->in ) {
int bands;
vips_image_decode_predict( unary->in, &bands, NULL );
linear->n = VIPS_MAX( linear->n, bands );
}
arithmetic->base_bands = linear->n;
if( unary->in &&
linear->a &&
linear->b ) {
if( vips_check_vector( class->nickname,
linear->a->n, unary->in ) ||
vips_check_vector( class->nickname,
linear->b->n, unary->in ) )
return( -1 );
}
/* If all elements of the constants are equal, we can shrink them down
* to a single element.
*/
if( linear->a ) {
double *ary = (double *) linear->a->data;
gboolean all_equal;
all_equal = TRUE;
for( i = 1; i < linear->a->n; i++ )
if( ary[i] != ary[0] ) {
all_equal = FALSE;
break;
}
if( all_equal )
linear->a->n = 1;
}
if( linear->b ) {
double *ary = (double *) linear->b->data;
gboolean all_equal;
all_equal = TRUE;
for( i = 1; i < linear->b->n; i++ )
if( ary[i] != ary[0] ) {
all_equal = FALSE;
break;
}
if( all_equal )
linear->b->n = 1;
}
/* Make up-banded versions of our constants.
*/
linear->a_ready = VIPS_ARRAY( linear, linear->n, double );
linear->b_ready = VIPS_ARRAY( linear, linear->n, double );
for( i = 0; i < linear->n; i++ ) {
if( linear->a ) {
double *ary = (double *) linear->a->data;
int j = VIPS_MIN( i, linear->a->n - 1 );
linear->a_ready[i] = ary[j];
}
if( linear->b ) {
double *ary = (double *) linear->b->data;
int j = VIPS_MIN( i, linear->b->n - 1 );
linear->b_ready[i] = ary[j];
}
}
if( linear->uchar )
arithmetic->format = VIPS_FORMAT_UCHAR;
if( VIPS_OBJECT_CLASS( vips_linear_parent_class )->build( object ) )
return( -1 );
return( 0 );
}
/* Non-complex input, any output, all bands of the constant equal.
*/
#define LOOP1( IN, OUT ) { \
IN * restrict p = (IN *) in[0]; \
OUT * restrict q = (OUT *) out; \
OUT a1 = a[0]; \
OUT b1 = b[0]; \
int sz = width * nb; \
\
for( x = 0; x < sz; x++ ) \
q[x] = a1 * (OUT) p[x] + b1; \
}
/* Non-complex input, any output.
*/
#define LOOPN( IN, OUT ) { \
IN * restrict p = (IN *) in[0]; \
OUT * restrict q = (OUT *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) \
q[i] = a[k] * (OUT) p[i] + b[k]; \
}
#define LOOP( IN, OUT ) { \
if( linear->a->n == 1 && linear->b->n == 1 ) { \
LOOP1( IN, OUT ); \
} \
else { \
LOOPN( IN, OUT ); \
} \
}
/* Complex input, complex output.
*/
#define LOOPCMPLXN( IN, OUT ) { \
IN * restrict p = (IN *) in[0]; \
OUT * restrict q = (OUT *) out; \
\
for( x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++ ) { \
q[0] = a[k] * p[0] + b[k]; \
q[1] = p[1]; \
q += 2; \
p += 2; \
} \
}
/* Non-complex input, any output, all bands of the constant equal, uchar
* output.
*/
#define LOOP1uc( IN ) { \
IN * restrict p = (IN *) in[0]; \
VipsPel * restrict q = (VipsPel *) out; \
float a1 = a[0]; \
float b1 = b[0]; \
int sz = width * nb; \
\
for( x = 0; x < sz; x++ ) { \
float t = a1 * p[x] + b1; \
\
q[x] = VIPS_FCLIP( 0, t, 255 ); \
} \
}
/* Non-complex input, uchar output.
*/
#define LOOPNuc( IN ) { \
IN * restrict p = (IN *) in[0]; \
VipsPel * restrict q = (VipsPel *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) { \
double t = a[k] * p[i] + b[k]; \
\
q[i] = VIPS_FCLIP( 0, t, 255 ); \
} \
}
#define LOOPuc( IN ) { \
if( linear->a->n == 1 && linear->b->n == 1 ) { \
LOOP1uc( IN ); \
} \
else { \
LOOPNuc( IN ); \
} \
}
/* Complex input, uchar output.
*/
#define LOOPCMPLXNuc( IN ) { \
IN * restrict p = (IN *) in[0]; \
VipsPel * restrict q = (VipsPel *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) { \
double t = a[k] * p[0] + b[k]; \
\
q[i] = VIPS_FCLIP( 0, t, 255 ); \
p += 2; \
} \
}
/* Lintra a buffer, n set of scale/offset.
*/
static void
vips_linear_buffer( VipsArithmetic *arithmetic,
VipsPel *out, VipsPel **in, int width )
{
VipsImage *im = arithmetic->ready[0];
VipsLinear *linear = (VipsLinear *) arithmetic;
double * restrict a = linear->a_ready;
double * restrict b = linear->b_ready;
int nb = im->Bands;
int i, x, k;
if( linear->uchar )
switch( vips_image_get_format( im ) ) {
case VIPS_FORMAT_UCHAR:
LOOPuc( unsigned char ); break;
case VIPS_FORMAT_CHAR:
LOOPuc( signed char ); break;
case VIPS_FORMAT_USHORT:
LOOPuc( unsigned short ); break;
case VIPS_FORMAT_SHORT:
LOOPuc( signed short ); break;
case VIPS_FORMAT_UINT:
LOOPuc( unsigned int ); break;
case VIPS_FORMAT_INT:
LOOPuc( signed int ); break;
case VIPS_FORMAT_FLOAT:
LOOPuc( float ); break;
case VIPS_FORMAT_DOUBLE:
LOOPuc( double ); break;
case VIPS_FORMAT_COMPLEX:
LOOPCMPLXNuc( float ); break;
case VIPS_FORMAT_DPCOMPLEX:
LOOPCMPLXNuc( double ); break;
default:
g_assert_not_reached();
}
else
switch( vips_image_get_format( im ) ) {
case VIPS_FORMAT_UCHAR:
LOOP( unsigned char, float ); break;
case VIPS_FORMAT_CHAR:
LOOP( signed char, float ); break;
case VIPS_FORMAT_USHORT:
LOOP( unsigned short, float ); break;
case VIPS_FORMAT_SHORT:
LOOP( signed short, float ); break;
case VIPS_FORMAT_UINT:
LOOP( unsigned int, float ); break;
case VIPS_FORMAT_INT:
LOOP( signed int, float ); break;
case VIPS_FORMAT_FLOAT:
LOOP( float, float ); break;
case VIPS_FORMAT_DOUBLE:
LOOP( double, double ); break;
case VIPS_FORMAT_COMPLEX:
LOOPCMPLXN( float, float ); break;
case VIPS_FORMAT_DPCOMPLEX:
LOOPCMPLXN( double, double ); break;
default:
g_assert_not_reached();
}
}
/* Save a bit of typing.
*/
#define UC VIPS_FORMAT_UCHAR
#define C VIPS_FORMAT_CHAR
#define US VIPS_FORMAT_USHORT
#define S VIPS_FORMAT_SHORT
#define UI VIPS_FORMAT_UINT
#define I VIPS_FORMAT_INT
#define F VIPS_FORMAT_FLOAT
#define X VIPS_FORMAT_COMPLEX
#define D VIPS_FORMAT_DOUBLE
#define DX VIPS_FORMAT_DPCOMPLEX
/* Format doesn't change with linear.
*/
static const VipsBandFormat vips_linear_format_table[10] = {
/* Band format: UC C US S UI I F X D DX */
/* Promotion: */ F, F, F, F, F, F, F, X, D, DX
};
static void
vips_linear_class_init( VipsLinearClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsArithmeticClass *aclass = VIPS_ARITHMETIC_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "linear";
object_class->description = _( "calculate (a * in + b)" );
object_class->build = vips_linear_build;
aclass->process_line = vips_linear_buffer;
vips_arithmetic_set_format_table( aclass, vips_linear_format_table );
VIPS_ARG_BOXED( class, "a", 110,
_( "a" ),
_( "Multiply by this" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLinear, a ),
VIPS_TYPE_ARRAY_DOUBLE );
VIPS_ARG_BOXED( class, "b", 111,
_( "b" ),
_( "Add this" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLinear, b ),
VIPS_TYPE_ARRAY_DOUBLE );
VIPS_ARG_BOOL( class, "uchar", 112,
_( "uchar" ),
_( "Output should be uchar" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
G_STRUCT_OFFSET( VipsLinear, uchar ),
FALSE );
}
static void
vips_linear_init( VipsLinear *linear )
{
}
static int
vips_linearv( VipsImage *in, VipsImage **out,
const double *a, const double *b, int n, va_list ap )
{
VipsArea *area_a;
VipsArea *area_b;
int result;
area_a = VIPS_AREA( vips_array_double_new( a, n ) );
area_b = VIPS_AREA( vips_array_double_new( b, n ) );
result = vips_call_split( "linear", ap, in, out, area_a, area_b );
vips_area_unref( area_a );
vips_area_unref( area_b );
return( result );
}
/**
* vips_linear: (method)
* @in: image to transform
* @out: (out): output image
* @a: (array length=n): array of constants for multiplication
* @b: (array length=n): array of constants for addition
* @n: length of constant arrays
* @...: %NULL-terminated list of optional named arguments
*
* Optional arguments:
*
* * @uchar: output uchar pixels
*
* Pass an image through a linear transform, ie. (@out = @in * @a + @b). Output
* is float for integer input, double for double input, complex for
* complex input and double complex for double complex input. Set @uchar to
* output uchar pixels.
*
* If the arrays of constants have just one element, that constant is used for
* all image bands. If the arrays have more than one element and they have
* the same number of elements as there are bands in the image, then
* one array element is used for each band. If the arrays have more than one
* element and the image only has a single band, the result is a many-band
* image where each band corresponds to one array element.
*
* See also: vips_linear1(), vips_add().
*
* Returns: 0 on success, -1 on error
*/
int
vips_linear( VipsImage *in, VipsImage **out,
const double *a, const double *b, int n, ... )
{
va_list ap;
int result;
va_start( ap, n );
result = vips_linearv( in, out, a, b, n, ap );
va_end( ap );
return( result );
}
/**
* vips_linear1: (method)
* @in: image to transform
* @out: (out): output image
* @a: constant for multiplication
* @b: constant for addition
* @...: %NULL-terminated list of optional named arguments
*
* Optional arguments:
*
* * @uchar: output uchar pixels
*
* Run vips_linear() with a single constant.
*
* See also: vips_linear().
*
* Returns: 0 on success, -1 on error
*/
int
vips_linear1( VipsImage *in, VipsImage **out, double a, double b, ... )
{
va_list ap;
int result;
va_start( ap, b );
result = vips_linearv( in, out, &a, &b, 1, ap );
va_end( ap );
return( result );
}