libvips/libvips/convolution/conva.c

1361 lines
31 KiB
C

/* conva ... approximate convolution
*
* This operation does an approximate convolution.
*
* Author: John Cupitt & Nicolas Robidoux
* Written on: 31/5/11
* Modified on:
* 31/5/11
* - from im_aconvsep()
* 10/7/16
* - redone as a class
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
See:
http://incubator.quasimondo.com/processing/stackblur.pde
This thing is a little like stackblur, but generalised to any 2D
convolution.
*/
/*
TODO
timing:
$ time vips im_conv_f img_0075.jpg x2.v g2d201.con
real 5m3.359s
user 9m34.700s
sys 0m1.500s
$ time vips im_aconv img_0075.jpg x.v g2d201.con 10 10
real 0m3.151s
user 0m5.640s
sys 0m0.100s
$ vips im_subtract x.v x2.v diff.v
$ vips im_abs diff.v abs.v
$ vips im_max abs.v
2.70833
- are we handling mask offset correctly?
- could we do better with an h and a v cumulativization image? we might
not need the huge intermediate we have now, since any line sum an be
found with simple indexing
*/
/*
#define DEBUG
#define VIPS_DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/vector.h>
#include <vips/debug.h>
#include <vips/internal.h>
#include "pconvolution.h"
/* Maximum number of boxes we can break the mask into. Don't have this too
* high, it'll make the instance huge, and gobject has a 64kb limit.
*/
#define MAX_LINES (1000)
/* The number of edges we consider at once in clustering. Higher values are
* faster, but risk pushing up average error in the result.
*/
#define MAX_EDGES (1000)
/* A horizontal line in the mask.
*/
typedef struct _HLine {
/* Start is the left-most pixel in the line, end is one beyond the
* right-most pixel.
*/
int start;
int end;
/* The hlines have weights. weight 0 means this line is unused.
*/
int weight;
} HLine;
/* For clustering. A pair of hlines and their distance. An edge in a graph.
*/
typedef struct _Edge {
/* The index into boxes->hline[].
*/
int a;
int b;
/* The distance between them, see boxes_distance().
*/
int d;
} Edge;
/* An element of a vline.
*/
typedef struct _VElement {
/* band is the index into hline[] we add, row is the row we take
* it from.
*/
int band;
int row;
/* Negative lobes are made with factor -1, we also common-up repeated
* additions of the same line.
*/
int factor;
} VElement;
/* A vline.
*/
typedef struct _VLine {
int band;
int factor;
int start;
int end;
} VLine;
/* A set of boxes.
*/
typedef struct {
VipsConvolution parent_instance;
VipsImage *iM;
int layers;
int cluster;
int divisor;
int rounding;
int offset;
/* The horizontal lines we gather. hline[3] writes to band 3 in the
* intermediate image. max_line is the length of the longest hline:
* over 256 and we need to use an int intermediate for 8-bit images.
*/
int n_hline;
HLine hline[MAX_LINES];
int max_line;
/* During clustering, the top few edges we are considering.
*/
Edge edge[MAX_EDGES];
/* Scale and sum a set of hlines to make the final value.
*/
int n_velement;
VElement velement[MAX_LINES];
/* And group those velements as vlines.
*/
int n_vline;
VLine vline[MAX_LINES];
} VipsConva;
typedef VipsConvolutionClass VipsConvaClass;
G_DEFINE_TYPE( VipsConva, vips_conva, VIPS_TYPE_CONVOLUTION );
/* Euclid's algorithm. Use this to common up mults.
*/
static int
gcd( int a, int b )
{
if( b == 0 )
return( abs( a ) );
else
return( gcd( b, a % b ) );
}
static void
vips_conva_hline_start( VipsConva *conva, int x )
{
conva->hline[conva->n_hline].start = x;
conva->hline[conva->n_hline].weight = 1;
}
static int
vips_conva_hline_end( VipsConva *conva, int x, int y, int factor )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( conva );
conva->hline[conva->n_hline].end = x;
conva->velement[conva->n_velement].row = y;
conva->velement[conva->n_velement].band = conva->n_hline;
conva->velement[conva->n_velement].factor = factor;
if( conva->n_hline >= MAX_LINES - 1 ) {
vips_error( class->nickname, "%s", _( "mask too complex" ) );
return( -1 );
}
conva->n_hline += 1;
if( conva->n_velement >= MAX_LINES - 1 ) {
vips_error( class->nickname, "%s", _( "mask too complex" ) );
return( -1 );
}
conva->n_velement += 1;
return( 0 );
}
#ifdef DEBUG
static void
vips_conva_hprint( VipsConva *conva )
{
int x, y;
printf( "hlines:\n" );
printf( " n b r f w\n" );
for( y = 0; y < conva->n_velement; y++ ) {
int b = conva->velement[y].band;
printf( "%4d %3d %3d %2d %3d ",
y, b,
conva->velement[y].row,
conva->velement[y].factor,
conva->hline[b].weight );
for( x = 0; x < 45; x++ ) {
int rx = x * (conva->iM->Xsize + 1) / 45;
if( rx >= conva->hline[b].start &&
rx < conva->hline[b].end )
printf( "#" );
else
printf( " " );
}
printf( " %3d .. %3d\n",
conva->hline[b].start, conva->hline[b].end );
}
}
static void
vips_conva_vprint( VipsConva *conva )
{
int y;
printf( "%d vlines:\n", conva->n_vline );
printf( " n b f s e\n" );
for( y = 0; y < conva->n_vline; y++ )
printf( "%4d %2d %2d == %3d .. %3d\n", y,
conva->vline[y].band,
conva->vline[y].factor,
conva->vline[y].start,
conva->vline[y].end );
printf( "divisor = %d\n", conva->divisor );
printf( "rounding = %d\n", conva->rounding );
printf( "offset = %d\n", conva->offset );
printf( "max_line = %d\n", conva->max_line );
}
#endif /*DEBUG*/
/* Break the mask into a set of hlines.
*/
static int
vips_conva_decompose_hlines( VipsConva *conva )
{
VipsImage *iM = conva->iM;
const int size = iM->Xsize * iM->Ysize;
double *coeff = VIPS_MATRIX( iM, 0, 0 );
double max;
double min;
double depth;
int layers_above;
int layers_below;
int z, n, x, y;
/* Find mask range. We must always include the zero axis in the mask.
*/
max = 0;
min = 0;
for( n = 0; n < size; n++ ) {
max = VIPS_MAX( max, coeff[n] );
min = VIPS_MIN( min, coeff[n] );
}
VIPS_DEBUG_MSG( "vips_conva_decompose_hlines: min = %g, max = %g\n",
min, max );
/* The zero axis must fall on a layer boundary. Estimate the
* depth, find n-lines-above-zero, get exact depth, then calculate a
* fixed n-lines which includes any negative parts.
*/
depth = (max - min) / conva->layers;
layers_above = VIPS_CEIL( max / depth );
depth = max / layers_above;
layers_below = VIPS_FLOOR( min / depth );
conva->layers = layers_above - layers_below;
VIPS_DEBUG_MSG( "vips_conva_decompose_hlines: depth = %g, layers = %d\n",
depth, conva->layers );
/* For each layer, generate a set of lines which are inside the
* perimeter. Work down from the top.
*/
for( z = 0; z < conva->layers; z++ ) {
/* How deep we are into the mask, as a double we can test
* against. Add half the layer depth so we can easily find >50%
* mask elements.
*/
double z_ph = max - (1 + z) * depth + depth / 2;
/* Odd, but we must avoid rounding errors that make us miss 0
* in the line above.
*/
int z_positive = z < layers_above;
for( y = 0; y < iM->Ysize; y++ ) {
int inside;
/* Start outside the perimeter.
*/
inside = 0;
for( x = 0; x < iM->Xsize; x++ ) {
double c = coeff[x + y * iM->Xsize];
/* The vertical line from mask[x, y] to 0 is
* inside. Is our current square (x, y) part
* of that line?
*/
if( (z_positive && c >= z_ph) ||
(!z_positive && c <= z_ph) ) {
if( !inside ) {
vips_conva_hline_start( conva,
x );
inside = 1;
}
}
else {
if( inside ) {
if( vips_conva_hline_end( conva,
x, y,
z_positive ? 1 : -1 ) )
return( -1 );
inside = 0;
}
}
}
if( inside &&
vips_conva_hline_end( conva,
iM->Xsize, y, z_positive ? 1 : -1 ) )
return( -1 );
}
}
#ifdef DEBUG
VIPS_DEBUG_MSG( "vips_conva_decompose_hlines: generated %d hlines\n",
conva->n_hline );
vips_conva_hprint( conva );
#endif /*DEBUG*/
return( 0 );
}
/* The 'distance' between a pair of hlines.
*/
static int
vips_conva_distance( VipsConva *conva, int a, int b )
{
g_assert( conva->hline[a].weight > 0 && conva->hline[b].weight > 0 );
return( abs( conva->hline[a].start - conva->hline[b].start ) +
abs( conva->hline[a].end - conva->hline[b].end ) );
}
/* Merge two hlines. Line b is deleted, and any refs to b in vlines updated to
* point at a.
*/
static void
vips_conva_merge( VipsConva *conva, int a, int b )
{
int i;
/* Scale weights.
*/
int fa = conva->hline[a].weight;
int fb = conva->hline[b].weight;
double w = (double) fb / (fa + fb);
/* New endpoints.
*/
conva->hline[a].start += w *
(conva->hline[b].start - conva->hline[a].start);
conva->hline[a].end += w *
(conva->hline[b].end - conva->hline[a].end);
conva->hline[a].weight += conva->hline[b].weight;
/* Update velement refs to b to refer to a instead.
*/
for( i = 0; i < conva->n_velement; i++ )
if( conva->velement[i].band == b )
conva->velement[i].band = a;
/* Mark b to be deleted.
*/
conva->hline[b].weight = 0;
}
static int
edge_sortfn( const void *p1, const void *p2 )
{
Edge *a = (Edge *) p1;
Edge *b = (Edge *) p2;
return( a->d - b->d );
}
/* Cluster in batches. Return non-zero if we merged some lines.
*
* This is not as accurate as rescanning the whole space on every merge, but
* it's far faster.
*/
static int
vips_conva_cluster2( VipsConva *conva )
{
int i, j, k;
int worst;
int worst_i;
int merged;
for( i = 0; i < MAX_EDGES; i++ ) {
conva->edge[i].a = -1;
conva->edge[i].b = -1;
conva->edge[i].d = 99999;
}
worst_i = 0;
worst = conva->edge[worst_i].d;
for( i = 0; i < conva->n_hline; i++ ) {
if( conva->hline[i].weight == 0 )
continue;
for( j = i + 1; j < conva->n_hline; j++ ) {
int distance;
if( conva->hline[j].weight == 0 )
continue;
distance = vips_conva_distance( conva, i, j );
if( distance < worst ) {
conva->edge[worst_i].a = i;
conva->edge[worst_i].b = j;
conva->edge[worst_i].d = distance;
worst_i = 0;
worst = conva->edge[worst_i].d;
for( k = 0; k < MAX_EDGES; k++ )
if( conva->edge[k].d > worst ) {
worst = conva->edge[k].d;
worst_i = k;
}
}
}
}
/* Sort to get closest first.
*/
qsort( conva->edge, MAX_EDGES, sizeof( Edge ), edge_sortfn );
/*
printf( "edges:\n" );
printf( " n a b d:\n" );
for( i = 0; i < MAX_EDGES; i++ )
printf( "%2i) %3d %3d %3d\n", i,
conva->edge[i].a, conva->edge[i].b, conva->edge[i].d );
*/
/* Merge from the top down.
*/
merged = 0;
for( k = 0; k < MAX_EDGES; k++ ) {
Edge *edge = &conva->edge[k];
if( edge->d > conva->cluster )
break;
/* Has been removed, see loop below.
*/
if( edge->a == -1 )
continue;
vips_conva_merge( conva, edge->a, edge->b );
merged = 1;
/* Nodes a and b have vanished or been moved. Remove any edges
* which refer to them from the edge list,
*/
for( i = k; i < MAX_EDGES; i++ ) {
Edge *edgei = &conva->edge[i];
if( edgei->a == edge->a ||
edgei->b == edge->a ||
edgei->a == edge->b ||
edgei->b == edge->b )
edgei->a = -1;
}
}
return( merged );
}
/* Renumber after clustering. We will have removed a lot of hlines ... shuffle
* the rest down, adjust all the vline references.
*/
static void
vips_conva_renumber( VipsConva *conva )
{
int i, j;
VIPS_DEBUG_MSG( "vips_conva_renumber: renumbering ...\n" );
/* Loop for all zero-weight hlines.
*/
for( i = 0; i < conva->n_hline; ) {
if( conva->hline[i].weight > 0 ) {
i++;
continue;
}
/* We move hlines i + 1 down, so we need to adjust all
* band[] refs to match.
*/
for( j = 0; j < conva->n_velement; j++ )
if( conva->velement[j].band > i )
conva->velement[j].band -= 1;
memmove( conva->hline + i, conva->hline + i + 1,
sizeof( HLine ) * (conva->n_hline - i - 1) );
conva->n_hline -= 1;
}
VIPS_DEBUG_MSG( "vips_conva_renumber: ... %d hlines remain\n",
conva->n_hline );
}
/* Sort by band, then factor, then row.
*/
static int
velement_sortfn( const void *p1, const void *p2 )
{
VElement *a = (VElement *) p1;
VElement *b = (VElement *) p2;
if( a->band != b->band )
return( a->band - b->band );
if( a->factor != b->factor )
return( a->factor - b->factor );
return( a->row - b->row );
}
static void
vips_conva_vline( VipsConva *conva )
{
int y, z;
VIPS_DEBUG_MSG( "vips_conva_vline: forming vlines ...\n" );
/* Sort to get elements which could form a vline together.
*/
qsort( conva->velement, conva->n_velement, sizeof( VElement ),
velement_sortfn );
#ifdef DEBUG
vips_conva_hprint( conva );
#endif /*DEBUG*/
/* If two lines have the same row and band, we can join them and knock
* up the factor instead.
*/
for( y = 0; y < conva->n_velement; y++ ) {
for( z = y + 1; z < conva->n_velement; z++ )
if( conva->velement[z].band !=
conva->velement[y].band ||
conva->velement[z].row !=
conva->velement[y].row )
break;
/* We need to keep the sign of the old factor.
*/
if( conva->velement[y].factor > 0 )
conva->velement[y].factor = z - y;
else
conva->velement[y].factor = y - z;
memmove( conva->velement + y + 1, conva->velement + z,
sizeof( VElement ) * (conva->n_velement - z) );
conva->n_velement -= z - y - 1;
}
#ifdef DEBUG
printf( "after commoning up, %d velement remain\n", conva->n_velement );
vips_conva_hprint( conva );
#endif /*DEBUG*/
conva->n_vline = 0;
for( y = 0; y < conva->n_velement; ) {
int n = conva->n_vline;
/* Start of a line.
*/
conva->vline[n].band = conva->velement[y].band;
conva->vline[n].factor = conva->velement[y].factor;
conva->vline[n].start = conva->velement[y].row;
/* Search for the end of this line.
*/
for( z = y + 1; z < conva->n_velement; z++ )
if( conva->velement[z].band !=
conva->vline[n].band ||
conva->velement[z].factor !=
conva->vline[n].factor ||
conva->velement[z].row !=
conva->vline[n].start + z - y )
break;
/* So the line ends at the previously examined element. We
* want 'end' to be one beyond that (non-inclusive).
*/
conva->vline[n].end = conva->velement[z - 1].row + 1;
conva->n_vline += 1;
y = z;
}
VIPS_DEBUG_MSG( "vips_conva_vline: found %d vlines\n", conva->n_vline );
}
/* Break a mask into boxes.
*/
static int
vips_conva_decompose_boxes( VipsConva *conva )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( conva );
VipsImage *iM = conva->iM;
double *coeff = VIPS_MATRIX( iM, 0, 0 );
const int size = iM->Xsize * iM->Ysize;
double scale = vips_image_get_scale( iM );
double offset = vips_image_get_offset( iM );
double sum;
double area;
int x, y, z;
if( vips_conva_decompose_hlines( conva ) )
return( -1 );
/* Cluster to find groups of lines.
*/
VIPS_DEBUG_MSG( "vips_conva_decompose_boxes: "
"clustering hlines with thresh %d ...\n", conva->cluster );
while( vips_conva_cluster2( conva ) )
;
/* Renumber to remove holes created by clustering.
*/
vips_conva_renumber( conva );
/* Find a set of vlines for the remaining hlines.
*/
vips_conva_vline( conva );
/* Find the area of the lines and the length of the longest hline. We
* find the absolute area, we don't want -ves to cancel.
*/
area = 0;
conva->max_line = 0;
for( y = 0; y < conva->n_velement; y++ ) {
x = conva->velement[y].band;
z = conva->hline[x].end - conva->hline[x].start;
area += abs( conva->velement[y].factor * z );
if( z > conva->max_line )
conva->max_line = z;
}
/* Strength reduction: if all lines are divisible by n, we can move
* that n out into the area factor. The aim is to produce as many
* factor 1 lines as we can and to reduce the chance of overflow.
*/
x = conva->velement[0].factor;
for( y = 1; y < conva->n_velement; y++ )
x = gcd( x, conva->velement[y].factor );
for( y = 0; y < conva->n_velement; y++ )
conva->velement[y].factor /= x;
area *= x;
/* Find the area of the original mask. Again, don't let -ves cancel.
*/
sum = 0;
for( z = 0; z < size; z++ )
sum += fabs( coeff[z] );
conva->divisor = VIPS_RINT( area * scale / sum );
conva->rounding = (conva->divisor + 1) / 2;
conva->offset = offset;
#ifdef DEBUG
vips_conva_hprint( conva );
vips_conva_vprint( conva );
#endif /*DEBUG*/
/* With 512x512 tiles, each hline requires 3mb of intermediate per
* thread ... 300 lines is about a gb per thread, ouch.
*/
if( conva->n_hline > 150 ) {
vips_error( class->nickname, "%s", _( "mask too complex" ) );
return( -1 );
}
return( 0 );
}
/* Our sequence value.
*/
typedef struct {
VipsConva *conva;
VipsRegion *ir; /* Input region */
/* Offsets for start and stop.
*/
int *start;
int *end;
int last_stride; /* Avoid recalcing offsets, if we can */
/* The rolling sums. int for integer types, double for floating point
* types.
*/
void *sum;
} VipsConvaSeq;
/* Free a sequence value.
*/
static int
vips_conva_stop( void *vseq, void *a, void *b )
{
VipsConvaSeq *seq = (VipsConvaSeq *) vseq;
VIPS_UNREF( seq->ir );
return( 0 );
}
/* Convolution start function.
*/
static void *
vips_conva_start( VipsImage *out, void *a, void *b )
{
VipsImage *in = (VipsImage *) a;
VipsConva *conva = (VipsConva *) b;
VipsConvaSeq *seq;
seq = VIPS_NEW( out, VipsConvaSeq );
seq->conva = conva;
seq->ir = vips_region_new( in );
/* n_velement should be the largest possible dimension.
*/
g_assert( conva->n_velement >= conva->n_hline );
g_assert( conva->n_velement >= conva->n_vline );
seq->start = VIPS_ARRAY( out, conva->n_velement, int );
seq->end = VIPS_ARRAY( out, conva->n_velement, int );
if( vips_band_format_isint( out->BandFmt ) )
seq->sum = VIPS_ARRAY( out, conva->n_velement, int );
else
seq->sum = VIPS_ARRAY( out, conva->n_velement, double );
seq->last_stride = -1;
return( seq );
}
/* The h and v loops are very similar, but also annoyingly different. Keep
* them separate for easy debugging.
*/
#define HCONV( IN, OUT ) \
G_STMT_START { \
for( i = 0; i < bands; i++ ) { \
OUT *seq_sum = (OUT *) seq->sum; \
\
IN *p; \
OUT *q; \
\
p = i + (IN *) VIPS_REGION_ADDR( ir, r->left, r->top + y ); \
q = i * n_hline + \
(OUT *) VIPS_REGION_ADDR( or, r->left, r->top + y ); \
\
for( z = 0; z < n_hline; z++ ) { \
seq_sum[z] = 0; \
for( x = conva->hline[z].start; \
x < conva->hline[z].end; x++ ) \
seq_sum[z] += p[x * istride]; \
q[z] = seq_sum[z]; \
} \
q += ostride; \
\
for( x = 1; x < r->width; x++ ) { \
for( z = 0; z < n_hline; z++ ) { \
seq_sum[z] += p[seq->end[z]]; \
seq_sum[z] -= p[seq->start[z]]; \
q[z] = seq_sum[z]; \
} \
p += istride; \
q += ostride; \
} \
} \
} G_STMT_END
/* Do horizontal masks ... we scan the mask along scanlines.
*/
static int
vips_conva_hgenerate( VipsRegion *or, void *vseq,
void *a, void *b, gboolean *stop )
{
VipsConvaSeq *seq = (VipsConvaSeq *) vseq;
VipsImage *in = (VipsImage *) a;
VipsConva *conva = (VipsConva *) b;
VipsRegion *ir = seq->ir;
const int n_hline = conva->n_hline;
VipsImage *iM = conva->iM;
VipsRect *r = &or->valid;
/* Double the bands (notionally) for complex.
*/
int bands = vips_band_format_iscomplex( in->BandFmt ) ?
2 * in->Bands : in->Bands;
VipsRect s;
int x, y, z, i;
int istride;
int ostride;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += iM->Xsize - 1;
if( vips_region_prepare( ir, &s ) )
return( -1 );
istride = VIPS_IMAGE_SIZEOF_PEL( in ) /
VIPS_IMAGE_SIZEOF_ELEMENT( in );
ostride = VIPS_IMAGE_SIZEOF_PEL( or->im ) /
VIPS_IMAGE_SIZEOF_ELEMENT( or->im );
/* Init offset array.
*/
if( seq->last_stride != istride ) {
seq->last_stride = istride;
for( z = 0; z < n_hline; z++ ) {
seq->start[z] = conva->hline[z].start * istride;
seq->end[z] = conva->hline[z].end * istride;
}
}
for( y = 0; y < r->height; y++ ) {
switch( in->BandFmt ) {
case VIPS_FORMAT_UCHAR:
if( conva->max_line < 256 )
HCONV( unsigned char, unsigned short );
else
HCONV( unsigned char, unsigned int );
break;
case VIPS_FORMAT_CHAR:
if( conva->max_line < 256 )
HCONV( signed char, signed short );
else
HCONV( signed char, signed int );
break;
case VIPS_FORMAT_USHORT:
HCONV( unsigned short, unsigned int );
break;
case VIPS_FORMAT_SHORT:
HCONV( signed short, signed int );
break;
case VIPS_FORMAT_UINT:
HCONV( unsigned int, unsigned int );
break;
case VIPS_FORMAT_INT:
HCONV( signed int, signed int );
break;
case VIPS_FORMAT_FLOAT:
HCONV( float, float );
break;
case VIPS_FORMAT_DOUBLE:
HCONV( double, double );
break;
case VIPS_FORMAT_COMPLEX:
HCONV( float, float );
break;
case VIPS_FORMAT_DPCOMPLEX:
HCONV( double, double );
break;
default:
g_assert_not_reached();
}
}
return( 0 );
}
static int
vips_conva_horizontal( VipsConva *conva, VipsImage *in, VipsImage **out )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( conva );
/* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output
* would be 1x1.
*/
*out = vips_image_new();
if( vips_image_pipelinev( *out,
VIPS_DEMAND_STYLE_SMALLTILE, in, NULL ) )
return( -1 );
(*out)->Xsize -= conva->iM->Xsize - 1;
if( (*out)->Xsize <= 0 ) {
vips_error( class->nickname,
"%s", _( "image too small for mask" ) );
return( -1 );
}
(*out)->Bands *= conva->n_hline;
/* Short u?char lines can use u?short intermediate.
*/
if( vips_band_format_isuint( in->BandFmt ) )
(*out)->BandFmt = conva->max_line < 256 ?
VIPS_FORMAT_USHORT : VIPS_FORMAT_UINT;
else if( vips_band_format_isint( in->BandFmt ) )
(*out)->BandFmt = conva->max_line < 256 ?
VIPS_FORMAT_SHORT : VIPS_FORMAT_INT;
if( vips_image_generate( *out,
vips_conva_start, vips_conva_hgenerate, vips_conva_stop,
in, conva ) )
return( -1 );
return( 0 );
}
#define CLIP_UCHAR( V ) \
G_STMT_START { \
if( (V) < 0 ) \
(V) = 0; \
else if( (V) > UCHAR_MAX ) \
(V) = UCHAR_MAX; \
} G_STMT_END
#define CLIP_CHAR( V ) \
G_STMT_START { \
if( (V) < SCHAR_MIN ) \
(V) = SCHAR_MIN; \
else if( (V) > SCHAR_MAX ) \
(V) = SCHAR_MAX; \
} G_STMT_END
#define CLIP_USHORT( V ) \
G_STMT_START { \
if( (V) < 0 ) \
(V) = 0; \
else if( (V) > USHRT_MAX ) \
(V) = USHRT_MAX; \
} G_STMT_END
#define CLIP_SHORT( V ) \
G_STMT_START { \
if( (V) < SHRT_MIN ) \
(V) = SHRT_MIN; \
else if( (V) > SHRT_MAX ) \
(V) = SHRT_MAX; \
} G_STMT_END
#define CLIP_NONE( V ) {}
#define VCONV( ACC, IN, OUT, CLIP ) \
G_STMT_START { \
for( x = 0; x < sz; x++ ) { \
ACC *seq_sum = (ACC *) seq->sum; \
\
IN *p; \
OUT *q; \
ACC sum; \
\
p = x * conva->n_hline + \
(IN *) VIPS_REGION_ADDR( ir, r->left, r->top ); \
q = x + (OUT *) VIPS_REGION_ADDR( or, r->left, r->top ); \
\
sum = 0; \
for( z = 0; z < n_vline; z++ ) { \
seq_sum[z] = 0; \
for( k = conva->vline[z].start; \
k < conva->vline[z].end; k++ ) \
seq_sum[z] += p[k * istride + \
conva->vline[z].band]; \
sum += conva->vline[z].factor * seq_sum[z]; \
} \
sum = (sum + conva->rounding) / conva->divisor + conva->offset; \
CLIP( sum ); \
*q = sum; \
q += ostride; \
\
for( y = 1; y < r->height; y++ ) { \
sum = 0;\
for( z = 0; z < n_vline; z++ ) { \
seq_sum[z] += p[seq->end[z]]; \
seq_sum[z] -= p[seq->start[z]]; \
sum += conva->vline[z].factor * seq_sum[z]; \
} \
p += istride; \
sum = (sum + conva->rounding) / conva->divisor + \
conva->offset; \
CLIP( sum ); \
*q = sum; \
q += ostride; \
} \
} \
} G_STMT_END
/* Do vertical masks ... we scan the mask down columns of pixels.
*/
static int
vips_conva_vgenerate( VipsRegion *or, void *vseq,
void *a, void *b, gboolean *stop )
{
VipsConvaSeq *seq = (VipsConvaSeq *) vseq;
VipsImage *in = (VipsImage *) a;
VipsConva *conva = (VipsConva *) b;
VipsConvolution *convolution = (VipsConvolution *) conva;
VipsRegion *ir = seq->ir;
const int n_vline = conva->n_vline;
VipsImage *iM = conva->iM;
VipsRect *r = &or->valid;
/* Double the width (notionally) for complex.
*/
int sz = vips_band_format_iscomplex( in->BandFmt ) ?
2 * VIPS_REGION_N_ELEMENTS( or ) : VIPS_REGION_N_ELEMENTS( or );
VipsRect s;
int x, y, z, k;
int istride;
int ostride;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.height += iM->Ysize - 1;
if( vips_region_prepare( ir, &s ) )
return( -1 );
istride = VIPS_REGION_LSKIP( ir ) /
VIPS_IMAGE_SIZEOF_ELEMENT( in );
ostride = VIPS_REGION_LSKIP( or ) /
VIPS_IMAGE_SIZEOF_ELEMENT( convolution->out );
/* Init offset array.
*/
if( seq->last_stride != istride ) {
seq->last_stride = istride;
for( z = 0; z < n_vline; z++ ) {
seq->start[z] = conva->vline[z].band +
conva->vline[z].start * istride;
seq->end[z] = conva->vline[z].band +
conva->vline[z].end * istride;
}
}
switch( convolution->in->BandFmt ) {
case VIPS_FORMAT_UCHAR:
if( conva->max_line < 256 )
VCONV( unsigned int, \
unsigned short, unsigned char, CLIP_UCHAR );
else
VCONV( unsigned int, \
unsigned int, unsigned char, CLIP_UCHAR );
break;
case VIPS_FORMAT_CHAR:
if( conva->max_line < 256 )
VCONV( signed int, \
signed short, signed char, CLIP_CHAR );
else
VCONV( signed int, \
signed int, signed char, CLIP_CHAR );
break;
case VIPS_FORMAT_USHORT:
VCONV( unsigned int, \
unsigned int, unsigned short, CLIP_USHORT );
break;
case VIPS_FORMAT_SHORT:
VCONV( signed int, signed int, signed short, CLIP_SHORT );
break;
case VIPS_FORMAT_UINT:
VCONV( unsigned int, unsigned int, unsigned int, CLIP_NONE );
break;
case VIPS_FORMAT_INT:
VCONV( signed int, signed int, signed int, CLIP_NONE );
break;
case VIPS_FORMAT_FLOAT:
VCONV( float, float, float, CLIP_NONE );
break;
case VIPS_FORMAT_DOUBLE:
VCONV( double, double, double, CLIP_NONE );
break;
case VIPS_FORMAT_COMPLEX:
VCONV( float, float, float, CLIP_NONE );
break;
case VIPS_FORMAT_DPCOMPLEX:
VCONV( double, double, double, CLIP_NONE );
break;
default:
g_assert_not_reached();
}
return( 0 );
}
static int
vips_conva_vertical( VipsConva *conva, VipsImage *in, VipsImage **out )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( conva );
VipsConvolution *convolution = (VipsConvolution *) conva;
/* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output
* would be 1x1.
*/
*out = vips_image_new();
if( vips_image_pipelinev( *out,
VIPS_DEMAND_STYLE_SMALLTILE, in, NULL ) )
return( -1 );
(*out)->Ysize -= conva->iM->Ysize - 1;
if( (*out)->Ysize <= 0 ) {
vips_error( class->nickname,
"%s", _( "image too small for mask" ) );
return( -1 );
}
(*out)->Bands = convolution->in->Bands;
(*out)->BandFmt = convolution->in->BandFmt;
if( vips_image_generate( *out,
vips_conva_start, vips_conva_vgenerate, vips_conva_stop,
in, conva ) )
return( -1 );
return( 0 );
}
static int
vips_conva_build( VipsObject *object )
{
VipsConvolution *convolution = (VipsConvolution *) object;
VipsConva *conva = (VipsConva *) object;
VipsImage **t = (VipsImage **) vips_object_local_array( object, 4 );
VipsImage *in;
if( VIPS_OBJECT_CLASS( vips_conva_parent_class )->build( object ) )
return( -1 );
/* An int version of our mask.
*/
if( vips__image_intize( convolution->M, &t[0] ) )
return( -1 );
conva->iM = t[0];
#ifdef DEBUG
printf( "vips_conva_build: iM =\n" );
vips_matrixprint( conva->iM, NULL );
#endif /*DEBUG*/
in = convolution->in;
if( vips_conva_decompose_boxes( conva ) )
return( -1 );
g_object_set( conva, "out", vips_image_new(), NULL );
if(
vips_embed( in, &t[1],
t[0]->Xsize / 2,
t[0]->Ysize / 2,
in->Xsize + t[0]->Xsize - 1,
in->Ysize + t[0]->Ysize - 1,
"extend", VIPS_EXTEND_COPY,
NULL ) ||
vips_conva_horizontal( conva, t[1], &t[2] ) ||
vips_conva_vertical( conva, t[2], &t[3] ) ||
vips_image_write( t[3], convolution->out ) )
return( -1 );
convolution->out->Xoffset = 0;
convolution->out->Yoffset = 0;
return( 0 );
}
static void
vips_conva_class_init( VipsConvaClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "conva";
object_class->description = _( "approximate integer convolution" );
object_class->build = vips_conva_build;
VIPS_ARG_INT( class, "layers", 104,
_( "Layers" ),
_( "Use this many layers in approximation" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
G_STRUCT_OFFSET( VipsConva, layers ),
1, 1000, 5 );
VIPS_ARG_INT( class, "cluster", 105,
_( "Cluster" ),
_( "Cluster lines closer than this in approximation" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
G_STRUCT_OFFSET( VipsConva, cluster ),
1, 100, 1 );
}
static void
vips_conva_init( VipsConva *conva )
{
conva->layers = 5;
conva->cluster = 1;
}
/**
* vips_conva: (method)
* @in: input image
* @out: (out): output image
* @mask: convolution mask
* @...: %NULL-terminated list of optional named arguments
*
* Optional arguments:
*
* * @layers: %gint, number of layers for approximation
* * @cluster: %gint, cluster lines closer than this distance
*
* Perform an approximate integer convolution of @in with @mask.
* This is a low-level operation, see
* vips_conv() for something more convenient.
*
* The output image
* always has the same #VipsBandFormat as the input image.
* Elements of @mask are converted to
* integers before convolution.
*
* Larger values for @layers give more accurate
* results, but are slower. As @layers approaches the mask radius, the
* accuracy will become close to exact convolution and the speed will drop to
* match. For many large masks, such as Gaussian, @layers need be only 10% of
* this value and accuracy will still be good.
*
* Smaller values of @cluster will give more accurate results, but be slower
* and use more memory. 10% of the mask radius is a good rule of thumb.
*
* See also: vips_conv().
*
* Returns: 0 on success, -1 on error
*/
int
vips_conva( VipsImage *in, VipsImage **out, VipsImage *mask, ... )
{
va_list ap;
int result;
va_start( ap, mask );
result = vips_call_split( "conva", ap, in, out, mask );
va_end( ap );
return( result );
}