libvips/libvips/convolution/convi.c

1138 lines
27 KiB
C

/* convi
*
* Copyright: 1990, N. Dessipris.
*
* Author: Nicos Dessipris & Kirk Martinez
* Written on: 29/04/1991
* Modified on: 19/05/1991
* 8/7/93 JC
* - adapted for partial v2
* - memory leaks fixed
* - ANSIfied
* 23/7/93 JC
* - inner loop unrolled with a switch - 25% speed-up!
* 13/12/93 JC
* - tiny rounding error removed
* 7/10/94 JC
* - new IM_ARRAY() macro
* - various simplifications
* - evalend callback added
* 1/2/95 JC
* - use of IM_REGION_ADDR() updated
* - output size was incorrect! see comment below
* - bug with large non-square matricies fixed too
* - uses new im_embed() function
* 13/7/98 JC
* - wierd bug ... im_free_imask is no longer directly called for close
* callback, caused SIGKILL on solaris 2.6 ... linker bug?
* 9/3/01 JC
* - reworked and simplified, about 10% faster
* - slightly better range clipping
* 27/7/01 JC
* - reject masks with scale == 0
* 7/4/04
* - im_conv() now uses im_embed() with edge stretching on the input, not
* the output
* - sets Xoffset / Yoffset
* 11/11/05
* - simpler inner loop avoids gcc4 bug
* 7/11/07
* - new evalstart/end callbacks
* 12/5/08
* - int rounding was +1 too much, argh
* - only rebuild the buffer offsets if bpl changes
* 5/4/09
* - tiny speedups and cleanups
* - add restrict, though it doesn't seem to help gcc
* 12/11/09
* - only check for non-zero elements once
* - add mask-all-zero check
* - cleanups
* 3/2/10
* - gtkdoc
* - more cleanups
* 23/08/10
* - add a special case for 3x3 masks, about 20% faster
* 1/10/10
* - support complex (just double the bands)
* 18/10/10
* - add experimental Orc path
* 29/10/10
* - use VipsVector
* - get rid of im_convsep(), just call this twice, no longer worth
* keeping two versions
* 8/11/10
* - add array tiling
* 9/5/11
* - argh typo in overflow estimation could cause errors
* 15/10/11 Nicolas
* - handle offset correctly in seperable convolutions
* 26/1/16 Lovell Fuller
* - remove Duff for a 25% speedup
* 23/6/16
* - rewritten as a class
* - new fixed-point vector path, up to 2x faster
* 2/7/17
* - remove pts for a small speedup
* 12/10/17
* - fix leak of vectors, thanks MHeimbuc
* 14/10/17
* - switch to half-float for vector path
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define DEBUG
#define DEBUG_PIXELS
#define DEBUG_COMPILE
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <vips/vips.h>
#include <vips/internal.h>
#include "pconvolution.h"
/* Larger than this and we fall back to C.
*/
#define MAX_PASS (20)
/* A pass with a vector.
*/
typedef struct {
int first; /* The index of the first mask coff we use */
int last; /* The index of the last mask coff we use */
int r; /* Set previous result in this var */
/* The code we generate for this section of the mask.
*/
VipsVector *vector;
} Pass;
typedef struct {
VipsConvolution parent_instance;
int n_point; /* w * h for our matrix */
/* We make a smaller version of the mask with the zeros squeezed out.
*/
int nnz; /* Number of non-zero mask elements */
int *coeff; /* Array of non-zero mask coefficients */
int *coeff_pos; /* Index of each nnz element in mask->coeff */
/* And a half float version for the vector path. mant has the signed
* 8-bit mantissas in [-1, +1), sexp has the exponent shift after the
* mul and before the add, and exp has the final exponent shift before
* write-back.
*/
int *mant;
int sexp;
int exp;
/* The set of passes we need for this mask.
*/
int n_pass;
Pass pass[MAX_PASS];
/* Code for the final clip back to 8 bits.
*/
int r;
VipsVector *vector;
} VipsConvi;
typedef VipsConvolutionClass VipsConviClass;
G_DEFINE_TYPE( VipsConvi, vips_convi, VIPS_TYPE_CONVOLUTION );
/* Our sequence value.
*/
typedef struct {
VipsConvi *convi;
VipsRegion *ir; /* Input region */
int *offsets; /* Offsets for each non-zero matrix element */
int last_bpl; /* Avoid recalcing offsets, if we can */
/* We need a pair of intermediate buffers to keep the results of each
* vector conv pass.
*/
short *t1;
short *t2;
} VipsConviSequence;
static void
vips_convi_compile_free( VipsConvi *convi )
{
int i;
for( i = 0; i < convi->n_pass; i++ )
VIPS_FREEF( vips_vector_free, convi->pass[i].vector );
convi->n_pass = 0;
VIPS_FREEF( vips_vector_free, convi->vector );
}
static void
vips_convi_dispose( GObject *gobject )
{
VipsConvi *convi = (VipsConvi *) gobject;
#ifdef DEBUG
printf( "vips_convi_dispose: " );
vips_object_print_name( VIPS_OBJECT( gobject ) );
printf( "\n" );
#endif /*DEBUG*/
vips_convi_compile_free( convi );
G_OBJECT_CLASS( vips_convi_parent_class )->dispose( gobject );
}
/* Free a sequence value.
*/
static int
vips_convi_stop( void *vseq, void *a, void *b )
{
VipsConviSequence *seq = (VipsConviSequence *) vseq;
VIPS_UNREF( seq->ir );
VIPS_FREE( seq->offsets );
VIPS_FREE( seq->t1 );
VIPS_FREE( seq->t2 );
return( 0 );
}
/* Convolution start function.
*/
static void *
vips_convi_start( VipsImage *out, void *a, void *b )
{
VipsImage *in = (VipsImage *) a;
VipsConvi *convi = (VipsConvi *) b;
VipsConviSequence *seq;
if( !(seq = VIPS_NEW( out, VipsConviSequence )) )
return( NULL );
seq->convi = convi;
seq->ir = NULL;
seq->offsets = NULL;
seq->last_bpl = -1;
seq->t1 = NULL;
seq->t2 = NULL;
seq->ir = vips_region_new( in );
/* C mode.
*/
if( convi->nnz ) {
if( !(seq->offsets = VIPS_ARRAY( NULL, convi->nnz, int )) ) {
vips_convi_stop( seq, in, convi );
return( NULL );
}
}
/* Vector mode.
*/
if( convi->n_pass ) {
seq->t1 = VIPS_ARRAY( NULL, VIPS_IMAGE_N_ELEMENTS( in ), short );
seq->t2 = VIPS_ARRAY( NULL, VIPS_IMAGE_N_ELEMENTS( in ), short );
if( !seq->t1 ||
!seq->t2 ) {
vips_convi_stop( seq, in, convi );
return( NULL );
}
}
return( (void *) seq );
}
#define TEMP( N, S ) vips_vector_temporary( v, (char *) N, S )
#define PARAM( N, S ) vips_vector_parameter( v, (char *) N, S )
#define SCANLINE( N, P, S ) vips_vector_source_scanline( v, (char *) N, P, S )
#define CONST( N, V, S ) vips_vector_constant( v, (char *) N, V, S )
#define ASM2( OP, A, B ) vips_vector_asm2( v, (char *) OP, A, B )
#define ASM3( OP, A, B, C ) vips_vector_asm3( v, (char *) OP, A, B, C )
/* Generate code for a section of the mask. first is the index we start
* at, we set last to the index of the last one we use before we run
* out of intermediates / constants / parameters / sources or mask
* coefficients.
*
* 0 for success, -1 on error.
*/
static int
vips_convi_compile_section( VipsConvi *convi, VipsImage *in, Pass *pass )
{
VipsConvolution *convolution = (VipsConvolution *) convi;
VipsImage *M = convolution->M;
VipsVector *v;
int i;
#ifdef DEBUG_COMPILE
printf( "starting pass %d\n", pass->first );
#endif /*DEBUG_COMPILE*/
pass->vector = v = vips_vector_new( "convi", 2 );
/* "r" is the array of sums from the previous pass (if any).
*/
pass->r = vips_vector_source_name( v, "r", 2 );
/* The value we fetch from the image, the accumulated sum.
*/
TEMP( "value", 2 );
TEMP( "valueb", 1 );
TEMP( "sum", 2 );
/* Init the sum. If this is the first pass, it's a constant. If this
* is a later pass, we have to init the sum from the result
* of the previous pass.
*/
if( pass->first == 0 ) {
char rnd[256];
CONST( rnd, 1 << (convi->exp - 1), 2 );
ASM2( "loadpw", "sum", rnd );
}
else
ASM2( "loadw", "sum", "r" );
for( i = pass->first; i < convi->n_point; i++ ) {
int x = i % M->Xsize;
int y = i / M->Xsize;
char source[256];
char off[256];
char rnd[256];
char sexp[256];
char coeff[256];
/* Exclude zero elements.
*/
if( !convi->mant[i] )
continue;
/* The source. sl0 is the first scanline in the mask.
*/
SCANLINE( source, y, 1 );
/* Load with an offset. Only for non-first-columns though.
*/
if( x == 0 )
ASM2( "convubw", "value", source );
else {
CONST( off, in->Bands * x, 1 );
ASM3( "loadoffb", "valueb", source, off );
ASM2( "convubw", "value", "valueb" );
}
/* We need a signed multiply, so the image pixel needs to
* become a signed 16-bit value. We know only the bottom 8 bits
* of the image and coefficient are interesting, so we can take
* the bottom half of a 16x16->32 multiply.
*/
CONST( coeff, convi->mant[i], 2 );
ASM3( "mullw", "value", "value", coeff );
/* Shift right before add to prevent overflow on large masks.
*/
CONST( sexp, convi->sexp, 2 );
CONST( rnd, 1 << (convi->sexp - 1), 2 );
ASM3( "addw", "value", "value", rnd );
ASM3( "shrsw", "value", "value", sexp );
/* We accumulate the signed 16-bit result in sum. Saturated
* add.
*/
ASM3( "addssw", "sum", "sum", "value" );
if( vips_vector_full( v ) )
break;
}
pass->last = i;
/* And write to our intermediate buffer.
*/
ASM2( "copyw", "d1", "sum" );
if( !vips_vector_compile( v ) )
return( -1 );
#ifdef DEBUG_COMPILE
printf( "done coeffs %d to %d\n", pass->first, pass->last );
vips_vector_print( v );
#endif /*DEBUG_COMPILE*/
return( 0 );
}
/* Generate code for the final 16->8 conversion.
*
* 0 for success, -1 on error.
*/
static int
vips_convi_compile_clip( VipsConvi *convi )
{
VipsConvolution *convolution = (VipsConvolution *) convi;
VipsImage *M = convolution->M;
int offset = VIPS_RINT( vips_image_get_offset( M ) );
VipsVector *v;
char exp[256];
char off[256];
convi->vector = v = vips_vector_new( "convi", 1 );
/* "r" is the array of sums we clip down.
*/
convi->r = vips_vector_source_name( v, "r", 2 );
/* The value we fetch from the image.
*/
TEMP( "value", 2 );
CONST( exp, convi->exp, 2 );
ASM3( "shrsw", "value", "r", exp );
CONST( off, offset, 2 );
ASM3( "addw", "value", "value", off );
ASM2( "convsuswb", "d1", "value" );
if( !vips_vector_compile( v ) )
return( -1 );
return( 0 );
}
static int
vips_convi_compile( VipsConvi *convi, VipsImage *in )
{
int i;
Pass *pass;
/* Generate passes until we've used up the whole mask.
*/
for( i = 0;; ) {
/* Allocate space for another pass.
*/
if( convi->n_pass == MAX_PASS )
return( -1 );
pass = &convi->pass[convi->n_pass];
convi->n_pass += 1;
pass->first = i;
pass->r = -1;
if( vips_convi_compile_section( convi, in, pass ) )
return( -1 );
i = pass->last + 1;
if( i >= convi->n_point )
break;
}
if( vips_convi_compile_clip( convi ) )
return( -1 );
return( 0 );
}
static int
vips_convi_gen_vector( VipsRegion *or,
void *vseq, void *a, void *b, gboolean *stop )
{
VipsConviSequence *seq = (VipsConviSequence *) vseq;
VipsConvi *convi = (VipsConvi *) b;
VipsConvolution *convolution = (VipsConvolution *) convi;
VipsImage *M = convolution->M;
VipsImage *in = (VipsImage *) a;
VipsRegion *ir = seq->ir;
VipsRect *r = &or->valid;
int ne = r->width * in->Bands;
VipsRect s;
int i, y;
VipsExecutor executor[MAX_PASS];
VipsExecutor clip;
#ifdef DEBUG_PIXELS
printf( "vips_convi_gen_vector: generating %d x %d at %d x %d\n",
r->width, r->height, r->left, r->top );
#endif /*DEBUG_PIXELS*/
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += M->Xsize - 1;
s.height += M->Ysize - 1;
if( vips_region_prepare( ir, &s ) )
return( -1 );
for( i = 0; i < convi->n_pass; i++ )
vips_executor_set_program( &executor[i],
convi->pass[i].vector, ne );
vips_executor_set_program( &clip, convi->vector, ne );
VIPS_GATE_START( "vips_convi_gen_vector: work" );
for( y = 0; y < r->height; y ++ ) {
VipsPel *q = VIPS_REGION_ADDR( or, r->left, r->top + y );
#ifdef DEBUG_PIXELS
{
int h, v;
printf( "before convolve: x = %d, y = %d\n",
r->left, r->top + y );
for( v = 0; v < M->Ysize; v++ ) {
for( h = 0; h < M->Xsize; h++ )
printf( "%3d ", *VIPS_REGION_ADDR( ir,
r->left + h, r->top + y + v ) );
printf( "\n" );
}
}
#endif /*DEBUG_PIXELS*/
/* We run our n passes to generate this scanline.
*/
for( i = 0; i < convi->n_pass; i++ ) {
Pass *pass = &convi->pass[i];
vips_executor_set_scanline( &executor[i],
ir, r->left, r->top + y );
vips_executor_set_array( &executor[i],
pass->r, seq->t1 );
vips_executor_set_destination( &executor[i], seq->t2 );
vips_executor_run( &executor[i] );
VIPS_SWAP( signed short *, seq->t1, seq->t2 );
}
#ifdef DEBUG_PIXELS
printf( "before clip: %d\n", ((signed short *) seq->t1)[0] );
#endif /*DEBUG_PIXELS*/
vips_executor_set_array( &clip, convi->r, seq->t1 );
vips_executor_set_destination( &clip, q );
vips_executor_run( &clip );
#ifdef DEBUG_PIXELS
printf( "after clip: %d\n",
*VIPS_REGION_ADDR( or, r->left, r->top + y ) );
#endif /*DEBUG_PIXELS*/
}
VIPS_GATE_STOP( "vips_convi_gen_vector: work" );
VIPS_COUNT_PIXELS( or, "vips_convi_gen_vector" );
return( 0 );
}
/* INT inner loops.
*/
#define CONV_INT( TYPE, CLIP ) { \
TYPE * restrict p = (TYPE *) VIPS_REGION_ADDR( ir, le, y ); \
TYPE * restrict q = (TYPE *) VIPS_REGION_ADDR( or, le, y ); \
int * restrict offsets = seq->offsets; \
\
for( x = 0; x < sz; x++ ) { \
int sum; \
int i; \
\
sum = 0; \
for ( i = 0; i < nnz; i++ ) \
sum += t[i] * p[offsets[i]]; \
\
sum = ((sum + rounding) / scale) + offset; \
\
CLIP; \
\
q[x] = sum; \
p += 1; \
} \
}
/* FLOAT inner loops.
*/
#define CONV_FLOAT( TYPE ) { \
TYPE * restrict p = (TYPE *) VIPS_REGION_ADDR( ir, le, y ); \
TYPE * restrict q = (TYPE *) VIPS_REGION_ADDR( or, le, y ); \
int * restrict offsets = seq->offsets; \
\
for( x = 0; x < sz; x++ ) { \
double sum; \
int i; \
\
sum = 0; \
for ( i = 0; i < nnz; i++ ) \
sum += t[i] * p[offsets[i]]; \
\
sum = (sum / scale) + offset; \
\
q[x] = sum; \
p += 1; \
} \
}
/* Various integer range clips. Record over/under flows.
*/
#define CLIP_UCHAR( V ) \
G_STMT_START { \
if( (V) < 0 ) \
(V) = 0; \
else if( (V) > UCHAR_MAX ) \
(V) = UCHAR_MAX; \
} G_STMT_END
#define CLIP_CHAR( V ) \
G_STMT_START { \
if( (V) < SCHAR_MIN ) \
(V) = SCHAR_MIN; \
else if( (V) > SCHAR_MAX ) \
(V) = SCHAR_MAX; \
} G_STMT_END
#define CLIP_USHORT( V ) \
G_STMT_START { \
if( (V) < 0 ) \
(V) = 0; \
else if( (V) > USHRT_MAX ) \
(V) = USHRT_MAX; \
} G_STMT_END
#define CLIP_SHORT( V ) \
G_STMT_START { \
if( (V) < SHRT_MIN ) \
(V) = SHRT_MIN; \
else if( (V) > SHRT_MAX ) \
(V) = SHRT_MAX; \
} G_STMT_END
#define CLIP_NONE( V ) {}
/* Convolve!
*/
static int
vips_convi_gen( VipsRegion *or,
void *vseq, void *a, void *b, gboolean *stop )
{
VipsConviSequence *seq = (VipsConviSequence *) vseq;
VipsConvi *convi = (VipsConvi *) b;
VipsConvolution *convolution = (VipsConvolution *) convi;
VipsImage *M = convolution->M;
int scale = VIPS_RINT( vips_image_get_scale( M ) );
int rounding = scale / 2;
int offset = VIPS_RINT( vips_image_get_offset( M ) );
VipsImage *in = (VipsImage *) a;
VipsRegion *ir = seq->ir;
int * restrict t = convi->coeff;
const int nnz = convi->nnz;
VipsRect *r = &or->valid;
int le = r->left;
int to = r->top;
int bo = VIPS_RECT_BOTTOM( r );
int sz = VIPS_REGION_N_ELEMENTS( or ) *
(vips_band_format_iscomplex( in->BandFmt ) ? 2 : 1);
VipsRect s;
int x, y, z, i;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += M->Xsize - 1;
s.height += M->Ysize - 1;
if( vips_region_prepare( ir, &s ) )
return( -1 );
/* Fill offset array. Only do this if the bpl has changed since the
* previous vips_region_prepare().
*/
if( seq->last_bpl != VIPS_REGION_LSKIP( ir ) ) {
seq->last_bpl = VIPS_REGION_LSKIP( ir );
for( i = 0; i < nnz; i++ ) {
z = convi->coeff_pos[i];
x = z % M->Xsize;
y = z / M->Xsize;
seq->offsets[i] =
(VIPS_REGION_ADDR( ir, x + le, y + to ) -
VIPS_REGION_ADDR( ir, le, to )) /
VIPS_IMAGE_SIZEOF_ELEMENT( ir->im );
}
}
VIPS_GATE_START( "vips_convi_gen: work" );
for( y = to; y < bo; y++ ) {
switch( in->BandFmt ) {
case VIPS_FORMAT_UCHAR:
CONV_INT( unsigned char, CLIP_UCHAR( sum ) );
break;
case VIPS_FORMAT_CHAR:
CONV_INT( signed char, CLIP_CHAR( sum ) );
break;
case VIPS_FORMAT_USHORT:
CONV_INT( unsigned short, CLIP_USHORT( sum ) );
break;
case VIPS_FORMAT_SHORT:
CONV_INT( signed short, CLIP_SHORT( sum ) );
break;
case VIPS_FORMAT_UINT:
CONV_INT( unsigned int, CLIP_NONE( sum ) );
break;
case VIPS_FORMAT_INT:
CONV_INT( signed int, CLIP_NONE( sum ) );
break;
case VIPS_FORMAT_FLOAT:
case VIPS_FORMAT_COMPLEX:
CONV_FLOAT( float );
break;
case VIPS_FORMAT_DOUBLE:
case VIPS_FORMAT_DPCOMPLEX:
CONV_FLOAT( double );
break;
default:
g_assert_not_reached();
}
}
VIPS_GATE_STOP( "vips_convi_gen: work" );
VIPS_COUNT_PIXELS( or, "vips_convi_gen" );
return( 0 );
}
/* Make an int version of a mask.
*
* We rint() everything, then adjust the scale try to match the overall
* effect.
*/
int
vips__image_intize( VipsImage *in, VipsImage **out )
{
VipsImage *t;
int x, y;
double double_result;
double out_scale;
double out_offset;
int int_result;
if( vips_check_matrix( "vips2imask", in, &t ) )
return( -1 );
if( !(*out = vips_image_new_matrix( t->Xsize, t->Ysize )) ) {
g_object_unref( t );
return( -1 );
}
/* We want to make an intmask which has the same input to output ratio
* as the double image.
*
* Imagine convolving with the double image, what's the ratio of
* brightness between input and output? We want the same ratio for the
* int version, if we can.
*
* Imagine an input image where every pixel is 1, what will the output
* be?
*/
double_result = 0;
for( y = 0; y < t->Ysize; y++ )
for( x = 0; x < t->Xsize; x++ )
double_result += *VIPS_MATRIX( t, x, y );
double_result /= vips_image_get_scale( t );
for( y = 0; y < t->Ysize; y++ )
for( x = 0; x < t->Xsize; x++ )
*VIPS_MATRIX( *out, x, y ) =
VIPS_RINT( *VIPS_MATRIX( t, x, y ) );
out_scale = VIPS_RINT( vips_image_get_scale( t ) );
if( out_scale == 0 )
out_scale = 1;
out_offset = VIPS_RINT( vips_image_get_offset( t ) );
/* Now convolve a 1 everywhere image with the int version we've made,
* what do we get?
*/
int_result = 0;
for( y = 0; y < t->Ysize; y++ )
for( x = 0; x < t->Xsize; x++ )
int_result += *VIPS_MATRIX( *out, x, y );
int_result /= out_scale;
/* And adjust the scale to get as close to a match as we can.
*/
out_scale = VIPS_RINT( out_scale + (int_result - double_result) );
if( out_scale == 0 )
out_scale = 1;
vips_image_set_double( *out, "scale", out_scale );
vips_image_set_double( *out, "offset", out_offset );
g_object_unref( t );
return( 0 );
}
/* Make an int version of a mask. Each element is 8.8 float, with the same
* exponent for each element (so just 8 bits in @out).
*
* @out is a w x h int array.
*/
static int
vips_convi_intize( VipsConvi *convi, VipsImage *M )
{
VipsImage *t;
double scale;
double *scaled;
double mx;
double mn;
int shift;
int i;
if( vips_check_matrix( "vips2imask", M, &t ) )
return( -1 );
/* Bake the scale into the mask to make a double version.
*/
scale = vips_image_get_scale( t );
if( !(scaled = VIPS_ARRAY( convi, convi->n_point, double )) ) {
g_object_unref( t );
return( -1 );
}
for( i = 0; i < convi->n_point; i++ )
scaled[i] = VIPS_MATRIX( t, 0, 0 )[i] / scale;
g_object_unref( t );
#ifdef DEBUG_COMPILE
{
int x, y;
printf( "vips_convi_intize: double version\n" );
for( y = 0; y < t->Ysize; y++ ) {
printf( "\t" );
for( x = 0; x < t->Xsize; x++ )
printf( "%g ", scaled[y * t->Xsize + x] );
printf( "\n" );
}
}
#endif /*DEBUG_COMPILE*/
mx = scaled[0];
mn = scaled[0];
for( i = 1; i < convi->n_point; i++ ) {
if( scaled[i] > mx )
mx = scaled[i];
if( scaled[i] < mn )
mn = scaled[i];
}
/* The mask max rounded up to the next power of two gives the exponent
* all elements share. Values are eg. -3 for 1/8, 3 for 8.
*
* Add one so we round up stuff exactly on x.0. We multiply by 128
* later, so 1.0 (for example) would become 128, which is outside
* signed 8 bit.
*/
shift = ceil( log2( mx ) + 1 );
/* We need to sum n_points, so we have to shift right before adding a
* new value to make sure we have enough range.
*/
convi->sexp = ceil( log2( convi->n_point ) );
if( convi->sexp > 10 ) {
g_info( "vips_convi_intize: mask too large" );
return( -1 );
}
/* With that already done, the final shift must be ...
*/
convi->exp = 7 - shift - convi->sexp;
if( !(convi->mant = VIPS_ARRAY( convi, convi->n_point, int )) )
return( -1 );
for( i = 0; i < convi->n_point; i++ ) {
/* 128 since this is signed.
*/
convi->mant[i] = VIPS_RINT( 128 * scaled[i] * pow(2, -shift) );
if( convi->mant[i] < -128 ||
convi->mant[i] > 127 ) {
g_info( "vips_convi_intize: mask range too large" );
return( -1 );
}
}
#ifdef DEBUG_COMPILE
{
int x, y;
printf( "vips_convi_intize:\n" );
printf( "sexp = %d\n", convi->sexp );
printf( "exp = %d\n", convi->exp );
for( y = 0; y < t->Ysize; y++ ) {
printf( "\t" );
for( x = 0; x < t->Xsize; x++ )
printf( "%4d ", convi->mant[y * t->Xsize + x] );
printf( "\n" );
}
}
#endif /*DEBUG_COMPILE*/
/* Verify accuracy.
*/
{
double true_sum;
int int_sum;
int true_value;
int int_value;
true_sum = 0.0;
int_sum = 0;
for( i = 0; i < convi->n_point; i++ ) {
int value;
true_sum += 128 * scaled[i];
value = 128 * convi->mant[i];
value = (value + (1 << (convi->sexp - 1))) >> convi->sexp;
int_sum += value;
int_sum = VIPS_CLIP( SHRT_MIN, int_sum, SHRT_MAX );
}
true_value = VIPS_CLIP( 0, true_sum, 255 );
if( convi->exp > 0 )
int_value = (int_sum + (1 << (convi->exp - 1))) >> convi->exp;
else
int_value = VIPS_LSHIFT_INT( int_sum, convi->exp );
int_value = VIPS_CLIP( 0, int_value, 255 );
if( VIPS_ABS( true_value - int_value ) > 2 ) {
g_info( "vips_convi_intize: too inaccurate" );
return( -1 );
}
}
return( 0 );
}
static int
vips_convi_build( VipsObject *object )
{
VipsConvolution *convolution = (VipsConvolution *) object;
VipsConvi *convi = (VipsConvi *) object;
VipsImage **t = (VipsImage **) vips_object_local_array( object, 4 );
VipsImage *in;
VipsImage *M;
VipsGenerateFn generate;
double *coeff;
int i;
if( VIPS_OBJECT_CLASS( vips_convi_parent_class )->build( object ) )
return( -1 );
in = convolution->in;
M = convolution->M;
convi->n_point = M->Xsize * M->Ysize;
if( vips_embed( in, &t[0],
M->Xsize / 2, M->Ysize / 2,
in->Xsize + M->Xsize - 1, in->Ysize + M->Ysize - 1,
"extend", VIPS_EXTEND_COPY,
NULL ) )
return( -1 );
in = t[0];
/* Default to the C path.
*/
generate = vips_convi_gen;
/* For uchar input, try to make a vector path.
*/
if( vips_vector_isenabled() &&
in->BandFmt == VIPS_FORMAT_UCHAR ) {
if( !vips_convi_intize( convi, M ) &&
!vips_convi_compile( convi, in ) ) {
generate = vips_convi_gen_vector;
g_info( "convi: using vector path" );
}
else
vips_convi_compile_free( convi );
}
/* Make the data for the C path.
*/
if( generate == vips_convi_gen ) {
g_info( "convi: using C path" );
/* Make an int version of our mask.
*/
if( vips__image_intize( M, &t[1] ) )
return( -1 );
M = t[1];
coeff = VIPS_MATRIX( M, 0, 0 );
if( !(convi->coeff = VIPS_ARRAY( object, convi->n_point, int )) ||
!(convi->coeff_pos =
VIPS_ARRAY( object, convi->n_point, int )) )
return( -1 );
/* Squeeze out zero mask elements.
*/
convi->nnz = 0;
for( i = 0; i < convi->n_point; i++ )
if( coeff[i] ) {
convi->coeff[convi->nnz] = coeff[i];
convi->coeff_pos[convi->nnz] = i;
convi->nnz += 1;
}
/* Was the whole mask zero? We must have at least 1 element
* in there: set it to zero.
*/
if( convi->nnz == 0 ) {
convi->coeff[0] = 0;
convi->coeff_pos[0] = 0;
convi->nnz = 1;
}
}
g_object_set( convi, "out", vips_image_new(), NULL );
if( vips_image_pipelinev( convolution->out,
VIPS_DEMAND_STYLE_SMALLTILE, in, NULL ) )
return( -1 );
/* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output
* would be 1x1.
*/
convolution->out->Xsize -= M->Xsize - 1;
convolution->out->Ysize -= M->Ysize - 1;
if( vips_image_generate( convolution->out,
vips_convi_start, generate, vips_convi_stop, in, convi ) )
return( -1 );
convolution->out->Xoffset = -M->Xsize / 2;
convolution->out->Yoffset = -M->Ysize / 2;
return( 0 );
}
static void
vips_convi_class_init( VipsConviClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
gobject_class->dispose = vips_convi_dispose;
object_class->nickname = "convi";
object_class->description = _( "int convolution operation" );
object_class->build = vips_convi_build;
}
static void
vips_convi_init( VipsConvi *convi )
{
convi->nnz = 0;
convi->coeff = NULL;
convi->coeff_pos = NULL;
}
/**
* vips_convi: (method)
* @in: input image
* @out: (out): output image
* @mask: convolve with this mask
* @...: %NULL-terminated list of optional named arguments
*
* Integer convolution. This is a low-level operation, see vips_conv() for
* something more convenient.
*
* @mask is converted to an integer mask with rint() of each element, rint of
* scale and rint of offset. Each output pixel is then calculated as
*
* |[
* sigma[i]{pixel[i] * mask[i]} / scale + offset
* ]|
*
* The output image always has the same #VipsBandFormat as the input image.
*
* For #VIPS_FORMAT_UCHAR images, vips_convi() uses a fast vector path based on
* half-float arithmetic. This can produce slightly different results.
* Disable the vector path with `--vips-novector` or `VIPS_NOVECTOR` or
* vips_vector_set_enabled().
*
* See also: vips_conv().
*
* Returns: 0 on success, -1 on error
*/
int
vips_convi( VipsImage *in, VipsImage **out, VipsImage *mask, ... )
{
va_list ap;
int result;
va_start( ap, mask );
result = vips_call_split( "convi", ap, in, out, mask );
va_end( ap );
return( result );
}