libvips/tools/vipsprofile

285 lines
7.7 KiB
Python
Executable File

#!/usr/bin/python
import re
import math
import cairo
class ReadFile:
def __init__(self, filename):
self.filename = filename
def __enter__(self):
self.f = open(self.filename, 'r')
self.lineno = 0
self.getnext();
return self
def __exit__(self, type, value, traceback):
self.f.close()
def __nonzero__(self):
return self.line != ""
def getnext(self):
self.lineno += 1
self.line = self.f.readline()
def read_times(rf):
times = []
while True:
match = re.match('[0-9]+ ', rf.line)
if not match:
break
times += [int(x) for x in re.split(' ', rf.line.rstrip())]
rf.getnext()
return times[::-1]
class Thread:
thread_number = 0
def __init__(self, thread_name):
self.thread_name = thread_name
self.thread_number = Thread.thread_number
self.events = []
Thread.thread_number += 1
class Event:
def __init__(self, thread, gate_name, start, stop):
self.thread = thread
self.gate_name = gate_name
self.start = start
self.stop = stop
self.work = False
self.wait = False
if re.match('.*?: .*work.*', gate_name):
self.work = True
if re.match('.*?: .*wait.*', gate_name):
self.wait = True
thread.events.append(self)
input_filename = 'vips-profile.txt'
thread_id = 0
threads = []
n_events = 0
print 'reading from', input_filename
with ReadFile(input_filename) as rf:
while rf:
if rf.line.rstrip() == "":
rf.getnext()
continue
if rf.line[0] == "#":
rf.getnext()
continue
match = re.match('thread: (.*)', rf.line)
if not match:
print 'parse error line %d, expected "thread"' % rf.lineno
thread_name = match.group(1) + " " + str(thread_id)
thread_id += 1
thread = Thread(thread_name)
threads.append(thread)
rf.getnext()
while True:
match = re.match('gate: (.*)', rf.line)
if not match:
break
gate_name = match.group(1)
match = re.match('vips_(.*)', gate_name)
if match:
gate_name = match.group(1)
rf.getnext()
match = re.match('start:', rf.line)
if not match:
continue
rf.getnext()
start = read_times(rf)
match = re.match('stop:', rf.line)
if not match:
continue
rf.getnext()
stop = read_times(rf)
if len(start) != len(stop):
print 'start and stop length mismatch'
for a, b in zip(start, stop):
Event(thread, gate_name, a, b)
n_events += 1
for thread in threads:
thread.events.sort(lambda x, y: cmp(x.start, y.start))
print 'loaded %d events' % n_events
# normalise time axis to secs of computation
ticks_per_sec = 1000000.0
start_time = threads[0].events[0].start
last_time = 0
for thread in threads:
for event in thread.events:
event.start = (event.start - start_time) / ticks_per_sec
event.stop = (event.stop - start_time) / ticks_per_sec
if event.stop > last_time:
last_time = event.stop
print 'last time =', last_time
# calculate some simple stats
print 'name\t\t\t\talive\twait%\twork%\tunk%'
for thread in threads:
start = last_time
stop = 0
wait = 0
work = 0
for event in thread.events:
if event.start < start:
start = event.start
if event.stop > stop:
stop = event.stop
if event.wait:
wait += event.stop - event.start
if event.work:
work += event.stop - event.start
alive = stop - start
wait_percent = 100 * wait / alive
work_percent = 100 * work / alive
unkn_percent = 100 - (wait_percent + work_percent)
print '%30s\t%6.2g\t%.3g\t%.3g\t%.3g' % (thread.thread_name, alive, wait_percent, work_percent, unkn_percent)
# do two gates overlap?
def is_overlap(events, gate_name1, gate_name2):
for event1 in events:
if event1.gate_name != gate_name1:
continue
for event2 in events:
if event2.gate_name != gate_name2:
continue
# if either endpoint of 1 is within 2
if event1.start > event2.start and event1.stop < event2.stop:
return True
if event1.stop > event2.start and event1.stop < event2.stop:
return True
return False
# allocate a y position for each gate
total_y = 0
for thread in threads:
thread.total_y = total_y
# first pass .. move work and wait events to y == 0
gate_positions = {}
for event in thread.events:
if not event.work and not event.wait:
continue
# no works and waits must overlap
if not event.gate_name in gate_positions:
for gate_name in gate_positions:
if is_overlap(thread.events, event.gate_name, gate_name):
print 'gate', event.gate_name, 'and', gate_name, 'overlap'
break
gate_positions[event.gate_name] = 0
event.y = gate_positions[event.gate_name]
event.total_y = total_y + event.y
# second pass: move all other events to non-overlapping ys
y = 1
for event in thread.events:
if event.work or event.wait:
continue
if not event.gate_name in gate_positions:
no_overlap = False
for gate_name in gate_positions:
if not is_overlap(thread.events, gate_name, event.gate_name):
gate_positions[event.gate_name] = gate_positions[gate_name]
no_overlap = True
break
if not no_overlap:
gate_positions[event.gate_name] = y
y += 1
event.y = gate_positions[event.gate_name]
event.total_y = total_y + event.y
total_y += y
PIXELS_PER_SECOND = 1000
PIXELS_PER_GATE = 20
LEFT_BORDER = 320
BAR_HEIGHT = 5
WIDTH = int(LEFT_BORDER + last_time * PIXELS_PER_SECOND) + 50
HEIGHT = int((total_y + 1) * PIXELS_PER_GATE)
output_filename = "vips-profile.svg"
print 'writing to', output_filename
surface = cairo.SVGSurface(output_filename, WIDTH, HEIGHT)
ctx = cairo.Context(surface)
ctx.select_font_face('Sans')
ctx.set_font_size(15)
ctx.rectangle(0, 0, WIDTH, HEIGHT)
ctx.set_source_rgba(0.0, 0.0, 0.3, 1.0)
ctx.fill()
def draw_event(ctx, event):
left = event.start * PIXELS_PER_SECOND + LEFT_BORDER
top = event.total_y * PIXELS_PER_GATE + BAR_HEIGHT / 2
width = (event.stop - event.start) * PIXELS_PER_SECOND - 1
height = BAR_HEIGHT
ctx.rectangle(left, top, width, height)
if event.wait:
ctx.set_source_rgb(0.9, 0.1, 0.1)
elif event.work:
ctx.set_source_rgb(0.1, 0.9, 0.1)
else:
ctx.set_source_rgb(0.1, 0.1, 0.9)
ctx.fill()
if not event.wait and not event.work:
xbearing, ybearing, twidth, theight, xadvance, yadvance = \
ctx.text_extents(event.gate_name)
ctx.move_to(left + width / 2 - twidth / 2, top + theight)
ctx.set_source_rgb(1.00, 0.83, 0.00)
ctx.show_text(event.gate_name)
for thread in threads:
ctx.rectangle(0, thread.total_y * PIXELS_PER_GATE, WIDTH, 1)
ctx.set_source_rgb(1.00, 1.00, 1.00)
ctx.fill()
xbearing, ybearing, twidth, theight, xadvance, yadvance = \
ctx.text_extents(thread.thread_name)
ctx.move_to(0, theight + thread.total_y * PIXELS_PER_GATE)
ctx.set_source_rgb(1.00, 1.00, 1.00)
ctx.show_text(thread.thread_name)
for event in thread.events:
draw_event(ctx, event)
surface.finish()