Go to file
John Cupitt 1824c64c06 break >80 char line 2019-01-17 08:59:14 +00:00
benchmark
cplusplus Merge branch 'master' into add-icc-fallbacks 2019-01-12 13:58:30 +00:00
doc fix some links in docs 2019-01-16 17:45:02 +00:00
libvips break >80 char line 2019-01-17 08:59:14 +00:00
libvipsCC fix make dist 2018-06-10 16:58:05 +01:00
m4 improve pdfium linking 2018-12-12 17:24:49 +00:00
man done! but needs some tests 2017-05-04 14:54:49 +01:00
po fix make dist 2018-06-10 16:58:05 +01:00
python added new_from_image() to python 2017-04-28 18:27:15 +01:00
swig remove vips7 stuff from API 2018-05-16 15:08:21 +01:00
test revise XYZ2CMYK fallback path 2019-01-16 21:02:01 +00:00
tools version bump to get ready for the vips 8.8 cycle 2018-09-21 15:10:39 +01:00
.gitattributes
.gitignore Merge branch 'master' into add-nifti-support 2018-07-20 13:57:51 +01:00
.travis.yml Use a PPA with the latest version of magick 2019-01-07 19:10:21 +01:00
AUTHORS
COPYING
ChangeLog add changelog notes 2019-01-15 09:36:31 +00:00
INSTALL
Makefile.am vips7 API defaults off 2018-06-11 12:44:28 +01:00
NEWS
README.md fix link to docker-builds 2018-10-06 04:31:38 +01:00
THANKS
TODO notes 2018-11-23 17:22:06 +00:00
autogen.sh add Cite section 2017-04-24 17:34:13 +01:00
configure.ac fix small magicksave error 2019-01-04 10:34:30 +00:00
libvips.supp supps for helgrind 2017-03-27 10:05:03 +01:00
vips-cpp.pc.in
vips.pc.in
vipsCC.pc.in

README.md

libvips : an image processing library

Build Status Coverity Status

libvips is a demand-driven, horizontally threaded image processing library. Compared to similar libraries, libvips runs quickly and uses little memory. libvips is licensed under the LGPL 2.1+.

It has around 300 operations covering arithmetic, histograms, convolution, morphological operations, frequency filtering, colour, resampling, statistics and others. It supports a large range of numeric formats, from 8-bit int to 128-bit complex. Images can have any number of bands. It supports a good range of image formats, including JPEG, TIFF, PNG, WebP, FITS, Matlab, OpenEXR, PDF, SVG, HDR, PPM, CSV, GIF, Analyze, NIfTI, DeepZoom, and OpenSlide. It can also load images via ImageMagick or GraphicsMagick, letting it load formats like DICOM.

It comes with bindings for C, C++, and the command-line. Full bindings are available for Ruby, Python, PHP, .NET, Go, and Lua. libvips is used as an image processing engine by sharp (on node.js), bimg, sharp for Go, Ruby on Rails, carrierwave-vips, mediawiki, PhotoFlow and others. The official libvips GUI is nip2, a strange combination of a spreadsheet and an photo editor.

There are packages for most unix-like operating systems and binaries for Windows and OS X.

Building libvips from a source tarball

We keep pre-baked tarballs of releases on the vips website:

https://github.com/libvips/libvips/releases

Untar, then in the libvips directory you should just be able to do:

$ ./configure

Check the summary at the end of configure carefully. libvips must have build-essential, pkg-config, glib2.0-dev, libexpat1-dev.

You'll need the dev packages for the file format support you want. For basic jpeg and tiff support, you'll need libtiff5-dev, libjpeg-turbo8-dev, and libgsf-1-dev. See the Dependencies section below for a full list of the things that libvips can be configured to use.

Once configure is looking OK, compile and install with the usual:

$ make
$ sudo make install

By default this will install files to /usr/local.

We have detailed guides on the wiki for building on Windows and building on OS X.

Testing

Do a basic test of your build with:

$ make check

Run the libvips test suite with:

$ pytest

Run a specific test with:

$ pytest test/test-suite/test_foreign.py -k test_tiff

You will need to install a variety of Python packages for this, including pyvips, the libvips Python binding.

Building libvips from git

Checkout the latest sources with:

$ git clone git://github.com/libvips/libvips.git

Building from git needs more packages, you'll need at least swig, gtk-doc and gobject-introspection, see the dependencies section below. For example:

$ brew install gtk-doc swig

Then build the build system with:

$ ./autogen.sh

Debug build:

$ CFLAGS="-g -Wall" CXXFLAGS="-g -Wall" \
    ./configure --prefix=/home/john/vips --enable-debug
$ make
$ make install

Leak check:

$ export G_DEBUG=gc-friendly
$ valgrind --suppressions=libvips.supp \
       --leak-check=yes \
    vips ... > vips-vg.log 2>&1

Memory error debug:

$ valgrind --vgdb=yes --vgdb-error=0 vips  ...

valgrind threading check:

$ valgrind --tool=helgrind vips ... > vips-vg.log 2>&1

Clang build:

$ CC=clang CXX=clang++ ./configure --prefix=/home/john/vips

Clang static analysis:

$ scan-build ./configure --disable-introspection --disable-debug
$ scan-build -o scan -v make 
$ scan-view scan/2013-11-22-2

Clang dynamic analysis:

$ FLAGS="-O1 -g -fsanitize=address"
$ FLAGS="$FLAGS -fno-omit-frame-pointer -fno-optimize-sibling-calls"
$ CC=clang CXX=clang++ LD=clang \
    CFLAGS="$FLAGS" CXXFLAGS="$FLAGS" LDFLAGS=-fsanitize=address \
    ./configure --prefix=/home/john/vips 

$ FLAGS="-O1 -g -fsanitize=thread"
$ FLAGS="$FLAGS -fPIC"
$ FLAGS="$FLAGS -fno-omit-frame-pointer -fno-optimize-sibling-calls"
$ CC=clang CXX=clang++ LD=clang \
  CFLAGS="$FLAGS" CXXFLAGS="$FLAGS" \
  LDFLAGS="-fsanitize=thread -fPIC" \
  ./configure --prefix=/home/john/vips \
    --without-magick \
    --disable-introspection
$ G_DEBUG=gc-friendly vips copy ~/pics/k2.jpg x.jpg >& log

Build with the GCC auto-vectorizer and diagnostics (or just -O3):

$ FLAGS="-O2 -march=native -ffast-math"
$ FLAGS="$FLAGS -ftree-vectorize -fdump-tree-vect-details"
$ CFLAGS="$FLAGS" CXXFLAGS="$FLAGS" \
  ./configure --prefix=/home/john/vips 

Static analysis with:

$ cppcheck --force --enable=style . &> cppcheck.log

Dependencies

libvips has to have glib2.0-dev. Other dependencies are optional, see below.

Optional dependencies

If suitable versions are found, libvips will add support for the following libraries automatically. See ./configure --help for a set of flags to control library detection. Packages are generally found with pkg-config, so make sure that is working.

libtiff, giflib and libjpeg do not usually use pkg-config so libvips looks for them in the default path and in $prefix. If you have installed your own versions of these libraries in a different location, libvips will not see them. Use switches to libvips configure like:

./configure --prefix=/Users/john/vips \
    --with-giflib-includes=/opt/local/include \
    --with-giflib-libraries=/opt/local/lib \
    --with-tiff-includes=/opt/local/include \
    --with-tiff-libraries=/opt/local/lib \
    --with-jpeg-includes=/opt/local/include \
    --with-jpeg-libraries=/opt/local/lib

or perhaps:

CFLAGS="-g -Wall -I/opt/local/include -L/opt/local/lib" \
CXXFLAGS="-g -Wall -I/opt/local/include -L/opt/local/lib" \
./configure --prefix=/Users/john/vips 

to get libvips to see your builds.

libjpeg

The IJG JPEG library. Use the -turbo version if you can.

libexif

If available, libvips adds support for EXIF metadata in JPEG files.

giflib

The standard gif loader. If this is not present, vips will try to load gifs via imagemagick instead.

librsvg

The usual SVG loader. If this is not present, vips will try to load SVGs via imagemagick instead.

PDFium

If present, libvips will attempt to load PDFs via PDFium. This library must be packaged by https://github.com/jcupitt/docker-builds/tree/master/pdfium

If PDFium is not detected, libvips will look for poppler-glib instead.

libpoppler

The usual PDF loader. If this is not present, vips will try to load PDFs via imagemagick.

libgsf-1

If available, libvips adds support for creating image pyramids with dzsave.

libtiff

The TIFF library. It needs to be built with support for JPEG and ZIP compression. 3.4b037 and later are known to be OK.

fftw3

If libvips finds this library, it uses it for fourier transforms.

lcms2, lcms

If present, vips_icc_import(), vips_icc_export() and vips_icc_transform() are available for transforming images with ICC profiles. If lcms2 is available it is used in preference to lcms, since it is faster.

Large files

libvips uses the standard autoconf tests to work out how to support large files (>2GB) on your system. Any reasonably recent unix should be OK.

libpng

If present, libvips can load and save png files.

libimagequant

If present, libvips can write 8-bit palette-ised PNGs.

ImageMagick, or optionally GraphicsMagick

If available, libvips adds support for loading all libMagick-supported image file types. Use --with-magickpackage=GraphicsMagick to build against graphicsmagick instead.

Imagemagick 6.9+ needs to have been built with --with-modules. Most packaged IMs are, I think.

If you are going to be using libvips with untrusted images, perhaps in a web-server, for example, you should consider the security implications of using a package with such a large attack surface. You might prefer not to enable Magick support.

pangoft2

If available, libvips adds support for text rendering. You need the package pangoft2 in pkg-config --list-all.

orc-0.4

If available, vips will accelerate some operations with this run-time compiler.

matio

If available, vips can load images from Matlab save files.

cfitsio

If available, vips can load FITS images.

libwebp

If available, vips can load and save WebP images.

libniftiio

If available, vips can load and save NIFTI images.

OpenEXR

If available, libvips will directly read (but not write, sadly) OpenEXR images.

OpenSlide

If available, libvips can load OpenSlide-supported virtual slide files: Aperio, Hamamatsu, Leica, MIRAX, Sakura, Trestle, and Ventana.

Disclaimer

No guarantees of performance accompany this software, nor is any responsibility assumed on the part of the authors. Please read the licence agreement.