libvips/libsrc/mosaicing/im_affine.c

768 lines
18 KiB
C

/* @(#) im_affine() ... affine transform, bi-linear interpolation.
* @(#)
* @(#) int im_affine(in, out, a, b, c, d, dx, dy, w, h, x, y)
* @(#)
* @(#) IMAGE *in, *out;
* @(#) double a, b, c, d, dx, dy;
* @(#) int w, h, x, y;
* @(#)
* @(#) Forward transform
* @(#) X = a * x + b * y + dx
* @(#) Y = c * x + d * y + dy
* @(#)
* @(#) x and y are the coordinates in input image.
* @(#) X and Y are the coordinates in output image.
* @(#) (0,0) is the upper left corner.
*
* Copyright N. Dessipris
* Written on: 01/11/1991
* Modified on: 12/3/92 JC
* - rounding error in interpolation routine fixed
* - test for scale=1, angle=0 case fixed
* - clipping of output removed: redundant
* - various little tidies
* - problems remain with scale>20, size<10
*
* Re-written on: 20/08/92, J.Ph Laurent
*
* 21/02/93, JC
* - speed-ups
* - simplifications
* - im_similarity now calculates a window and calls this routine
* 6/7/93 JC
* - rewritten for partials
* - ANSIfied
* - now rotates any non-complex type
* 3/6/94 JC
* - C revised in bug search
* 9/6/94 JC
* - im_prepare() was preparing too small an area! oops
* 22/5/95 JC
* - added code to detect all-black output area case - helps lazy ip
* 3/7/95 JC
* - IM_CODING_LABQ handling moved to here
* 31/7/97 JC
* - dx/dy sign reversed to be less confusing ... now follows comment at
* top ... ax - by + dx etc.
* - tiny speed up, replaced the *++ on interpolation with [z]
* - im_similarity() moved in here
* - args swapped: was whxy, now xywh
* - didn't agree with dispatch fns before :(
* 3/3/98 JC
* - im_demand_hint() added
* 20/12/99 JC
* - im_affine() made from im_similarity_area()
* - transform stuff cleaned up a bit
* 14/4/01 JC
* - oops, invert_point() had a rounding problem
* 23/2/02 JC
* - pre-calculate interpolation matricies
* - integer interpolation for int8/16 types, double for
* int32/float/double
* - faster transformation
* 15/8/02 JC
* - records Xoffset/Yoffset
* 14/4/04
* - rounding, clipping and transforming revised, now pixel-perfect (or
* better than gimp, anyway)
* 22/6/05
* - all revised again, simpler and more reliable now
* 30/3/06
* - gah, still an occasional clipping problem
* 12/7/06
* - still more tweaking, gah again
* 7/10/06
* - set THINSTRIP for no-rotate affines
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define DEBUG
#define DEBUG_GEOMETRY
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include <vips/vips.h>
#include <vips/internal.h>
#include "merge.h"
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* "fast" floor() ... on my laptop, anyway.
*/
#define FLOOR( V ) ((V) >= 0 ? (int)(V) : (int)((V) - 1))
/* Precalculate a whole bunch of interpolation matricies. int (used for pel
* sizes up to short), and double (for all others). We go to scale + 1, so
* we can round-to-nearest safely.
FIXME ... should use seperable tables really
*/
static int im_affine_linear_int
[TRANSFORM_SCALE + 1][TRANSFORM_SCALE + 1][4];
static double im_affine_linear_double
[TRANSFORM_SCALE + 1][TRANSFORM_SCALE + 1][4];
/* Make sure the interpolation tables are built.
*/
static void
affine_interpol_calc( void )
{
static int calced = 0;
int x, y;
if( calced )
return;
for( x = 0; x < TRANSFORM_SCALE + 1; x++ )
for( y = 0; y < TRANSFORM_SCALE + 1; y++ ) {
double X, Y, Xd, Yd;
double c1, c2, c3, c4;
/* Interpolation errors.
*/
X = (double) x / TRANSFORM_SCALE;
Y = (double) y / TRANSFORM_SCALE;
Xd = 1.0 - X;
Yd = 1.0 - Y;
/* Weights.
*/
c1 = Xd * Yd;
c2 = X * Yd;
c3 = X * Y;
c4 = Xd * Y;
im_affine_linear_double[x][y][0] = c1;
im_affine_linear_double[x][y][1] = c2;
im_affine_linear_double[x][y][2] = c3;
im_affine_linear_double[x][y][3] = c4;
im_affine_linear_int[x][y][0] = c1 * INTERPOL_SCALE;
im_affine_linear_int[x][y][1] = c2 * INTERPOL_SCALE;
im_affine_linear_int[x][y][2] = c3 * INTERPOL_SCALE;
im_affine_linear_int[x][y][3] = c4 * INTERPOL_SCALE;
}
calced = 1;
}
/* Calculate the inverse transformation.
*/
int
im__transform_calc_inverse( Transformation *trn )
{
DOUBLEMASK *msk, *msk2;
if( !(msk = im_create_dmaskv( "boink", 2, 2,
trn->a, trn->b, trn->c, trn->d )) )
return( -1 );
if( !(msk2 = im_matinv( msk, "boink2" )) ) {
(void) im_free_dmask( msk );
return( -1 );
}
trn->ia = msk2->coeff[0];
trn->ib = msk2->coeff[1];
trn->ic = msk2->coeff[2];
trn->id = msk2->coeff[3];
(void) im_free_dmask( msk );
(void) im_free_dmask( msk2 );
return( 0 );
}
/* Init a Transform.
*/
void
im__transform_init( Transformation *trn )
{
trn->oarea.left = 0;
trn->oarea.top = 0;
trn->oarea.width = -1;
trn->oarea.height = -1;
trn->iarea.left = 0;
trn->iarea.top = 0;
trn->iarea.width = -1;
trn->iarea.height = -1;
trn->a = 1.0; /* Identity transform */
trn->b = 0.0;
trn->c = 0.0;
trn->d = 1.0;
trn->dx = 0.0;
trn->dy = 0.0;
(void) im__transform_calc_inverse( trn );
}
/* Test for transform is identity function.
*/
int
im__transform_isidentity( Transformation *trn )
{
if( trn->a == 1.0 && trn->b == 0.0 && trn->c == 0.0 &&
trn->d == 1.0 && trn->dx == 0.0 && trn->dy == 0.0 )
return( 1 );
else
return( 0 );
}
/* Map a pixel coordinate through the transform.
*/
void
im__transform_forward( Transformation *trn,
double x, double y, /* In input space */
double *ox, double *oy ) /* In output space */
{
*ox = trn->a * x + trn->b * y + trn->dx;
*oy = trn->c * x + trn->d * y + trn->dy;
}
/* Map a pixel coordinate through the inverse transform.
*/
void
im__transform_inverse( Transformation *trn,
double x, double y, /* In output space */
double *ox, double *oy ) /* In input space */
{
double mx = x - trn->dx;
double my = y - trn->dy;
*ox = trn->ia * mx + trn->ib * my;
*oy = trn->ic * mx + trn->id * my;
}
/* Combine two transformations. out can be one of the ins.
*/
int
im__transform_add( Transformation *in1, Transformation *in2,
Transformation *out )
{
out->a = in1->a * in2->a + in1->c * in2->b;
out->b = in1->b * in2->a + in1->d * in2->b;
out->c = in1->a * in2->c + in1->c * in2->d;
out->d = in1->b * in2->c + in1->d * in2->d;
out->dx = in1->dx * in2->a + in1->dy * in2->b + in2->dx;
out->dy = in1->dx * in2->c + in1->dy * in2->d + in2->dy;
if( im__transform_calc_inverse( out ) )
return( -1 );
return( 0 );
}
void
im__transform_print( Transformation *trn )
{
printf( "im__transform_print:\n" );
printf( " iarea: left=%d, top=%d, width=%d, height=%d\n",
trn->iarea.left,
trn->iarea.top,
trn->iarea.width,
trn->iarea.height );
printf( " oarea: left=%d, top=%d, width=%d, height=%d\n",
trn->oarea.left,
trn->oarea.top,
trn->oarea.width,
trn->oarea.height );
printf( " mat: a=%g, b=%g, c=%g, d=%g\n",
trn->a, trn->b, trn->c, trn->d );
printf( " off: dx=%g, dy=%g\n",
trn->dx, trn->dy );
}
/* Map a point through the inverse transform. Used for clipping calculations,
* so it takes account of iarea and oarea.
*/
static void
invert_point( Transformation *trn,
double x, double y, /* In output space */
double *ox, double *oy ) /* In input space */
{
double xin = x - trn->oarea.left - trn->dx;
double yin = y - trn->oarea.top - trn->dy;
/* Find the inverse transform of current (x, y)
*/
*ox = trn->ia * xin + trn->ib * yin;
*oy = trn->ic * xin + trn->id * yin;
}
/* Given a bounding box for an area in the output image, set the bounding box
* for the corresponding pixels in the input image.
*/
static void
invert_rect( Transformation *trn,
Rect *in, /* In output space */
Rect *out ) /* In input space */
{
double x1, y1; /* Map corners */
double x2, y2;
double x3, y3;
double x4, y4;
double left, right, top, bottom;
/* Map input Rect.
*/
invert_point( trn, in->left, in->top, &x1, &y1 );
invert_point( trn, in->left, IM_RECT_BOTTOM(in), &x2, &y2 );
invert_point( trn, IM_RECT_RIGHT(in), in->top, &x3, &y3 );
invert_point( trn, IM_RECT_RIGHT(in), IM_RECT_BOTTOM(in), &x4, &y4 );
/* Find bounding box for these four corners.
*/
left = IM_MIN( x1, IM_MIN( x2, IM_MIN( x3, x4 ) ) );
right = IM_MAX( x1, IM_MAX( x2, IM_MAX( x3, x4 ) ) );
top = IM_MIN( y1, IM_MIN( y2, IM_MIN( y3, y4 ) ) );
bottom = IM_MAX( y1, IM_MAX( y2, IM_MAX( y3, y4 ) ) );
/* Set output Rect.
*/
out->left = left;
out->top = top;
out->width = right - left + 1;
out->height = bottom - top + 1;
/* Add a border for interpolation. You'd think +1 would do it, but
* we need to allow for rounding clipping as well.
FIXME ... will need adjusting when we add bicubic
*/
im_rect_marginadjust( out, 2 );
}
/* Interpolate a section ... int8/16 types.
*/
#define DO_IPEL(TYPE) { \
TYPE *tq = (TYPE *) q; \
\
int c1 = im_affine_linear_int[xi][yi][0]; \
int c2 = im_affine_linear_int[xi][yi][1]; \
int c3 = im_affine_linear_int[xi][yi][2]; \
int c4 = im_affine_linear_int[xi][yi][3]; \
\
/* p1 points to location (x_int, y_int) \
* p2 " " " (x_int+1, y_int) \
* p4 " " " (x_int+1, y_int+1) \
* p3 " " " (x_int, y_int+1) \
*/ \
PEL *p1 = (PEL *) IM_REGION_ADDR( ir, x_int, y_int ); \
PEL *p2 = p1 + ofs2; \
PEL *p3 = p1 + ofs3; \
PEL *p4 = p1 + ofs4; \
TYPE *tp1 = (TYPE *) p1; \
TYPE *tp2 = (TYPE *) p2; \
TYPE *tp3 = (TYPE *) p3; \
TYPE *tp4 = (TYPE *) p4; \
\
/* Interpolate each band. \
*/ \
for( z = 0; z < in->Bands; z++ ) \
tq[z] = (c1*tp1[z] + c2*tp2[z] + \
c3*tp3[z] + c4*tp4[z]) >> INTERPOL_SHIFT; \
}
/* Interpolate a pel ... int32 and float types.
*/
#define DO_FPEL(TYPE) { \
TYPE *tq = (TYPE *) q; \
\
double c1 = im_affine_linear_double[xi][yi][0]; \
double c2 = im_affine_linear_double[xi][yi][1]; \
double c3 = im_affine_linear_double[xi][yi][2]; \
double c4 = im_affine_linear_double[xi][yi][3]; \
\
/* p1 points to location (x_int, y_int) \
* p2 " " " (x_int+1, y_int) \
* p4 " " " (x_int+1, y_int+1) \
* p3 " " " (x_int, y_int+1) \
*/ \
PEL *p1 = (PEL *) IM_REGION_ADDR( ir, x_int, y_int ); \
PEL *p2 = p1 + ofs2; \
PEL *p3 = p1 + ofs3; \
PEL *p4 = p1 + ofs4; \
TYPE *tp1 = (TYPE *) p1; \
TYPE *tp2 = (TYPE *) p2; \
TYPE *tp3 = (TYPE *) p3; \
TYPE *tp4 = (TYPE *) p4; \
\
/* Interpolate each band. \
*/ \
for( z = 0; z < in->Bands; z++ ) \
tq[z] = c1*tp1[z] + c2*tp2[z] + \
c3*tp3[z] + c4*tp4[z]; \
}
static int
affine_gen( REGION *or, void *seq, void *a, void *b )
{
REGION *ir = (REGION *) seq;
IMAGE *in = (IMAGE *) a;
Transformation *trn = (Transformation *) b;
/* Output area for this call.
*/
Rect *r = &or->valid;
int le = r->left;
int ri = IM_RECT_RIGHT(r);
int to = r->top;
int bo = IM_RECT_BOTTOM(r);
Rect *iarea = &trn->iarea;
Rect *oarea = &trn->oarea;
int ps = IM_IMAGE_SIZEOF_PEL( in );
int x, y, z;
/* Interpolation variables.
*/
int ofs2, ofs3, ofs4;
/* Clipping Rects.
*/
Rect image, need, clipped;
/* Find the area of the input image we need.
*/
image.left = 0;
image.top = 0;
image.width = in->Xsize;
image.height = in->Ysize;
invert_rect( trn, r, &need );
im_rect_intersectrect( &need, &image, &clipped );
/* Outside input image? All black.
*/
if( im_rect_isempty( &clipped ) ) {
im__black_region( or );
return( 0 );
}
/* We do need some pixels from the input image to make our output -
* ask for them.
*/
if( im_prepare( ir, &clipped ) )
return( -1 );
#ifdef DEBUG
printf( "affine: preparing left=%d, top=%d, width=%d, height=%d\n",
clipped.left,
clipped.top,
clipped.width,
clipped.height );
#endif /*DEBUG*/
/* Calculate pel offsets.
*/
ofs2 = IM_IMAGE_SIZEOF_PEL( in );
ofs3 = ofs2 + IM_REGION_LSKIP( ir );
ofs4 = IM_REGION_LSKIP( ir );
/* Resample!
*/
for( y = to; y < bo; y++ ) {
/* Continuous cods in output space.
*/
double oy = y - oarea->top - trn->dy;
double ox;
/* Input clipping rectangle.
*/
int ile = iarea->left;
int ito = iarea->top;
int iri = iarea->left + iarea->width;
int ibo = iarea->top + iarea->height;
/* Derivative of matrix.
*/
double dx = trn->ia;
double dy = trn->ic;
/* Continuous cods in input space.
*/
double ix, iy;
PEL *q;
q = (PEL *) IM_REGION_ADDR( or, le, y );
ox = le - oarea->left - trn->dx;
ix = trn->ia * ox + trn->ib * oy;
iy = trn->ic * ox + trn->id * oy;
/* Offset ix/iy input by iarea.left/top ... so we skip the
* image edges we added for interpolation.
*/
ix += iarea->left;
iy += iarea->top;
for( x = le; x < ri; x++ ) {
int fx, fy;
fx = FLOOR( ix );
fy = FLOOR( iy );
/* Clipping! Use >= for right/bottom, since IPOL needs
* to see one pixel more each way.
*/
if( fx < ile || fx >= iri || fy < ito || fy >= ibo ) {
for( z = 0; z < ps; z++ )
q[z] = 0;
}
else {
double sx, sy;
int x_int, y_int;
int xi, yi;
/* Subtract 0.5 to centre the bilinear.
FIXME ... need to adjust for bicubic.
*/
sx = ix - 0.5;
sy = iy - 0.5;
/* Now go to scaled int.
*/
sx *= TRANSFORM_SCALE;
sy *= TRANSFORM_SCALE;
x_int = FLOOR( sx );
y_int = FLOOR( sy );
/* Get index into interpolation table and
* unscaled integer position.
*/
xi = x_int & (TRANSFORM_SCALE - 1);
yi = y_int & (TRANSFORM_SCALE - 1);
x_int = x_int >> TRANSFORM_SHIFT;
y_int = y_int >> TRANSFORM_SHIFT;
/* Interpolate for each input type.
*/
switch( in->BandFmt ) {
case IM_BANDFMT_UCHAR:
DO_IPEL( unsigned char );
break;
case IM_BANDFMT_CHAR:
DO_IPEL( char );
break;
case IM_BANDFMT_USHORT:
DO_IPEL( unsigned short );
break;
case IM_BANDFMT_SHORT:
DO_IPEL( short );
break;
case IM_BANDFMT_UINT:
DO_FPEL( unsigned int );
break;
case IM_BANDFMT_INT:
DO_FPEL( int );
break;
case IM_BANDFMT_FLOAT:
DO_FPEL( float );
break;
case IM_BANDFMT_DOUBLE:
DO_FPEL( double );
break;
default:
error_exit( "im_affine: panic!");
/*NOTREACHED*/
}
}
ix += dx;
iy += dy;
q += ps;
}
}
return( 0 );
}
static int
affine( IMAGE *in, IMAGE *out, Transformation *trn )
{
Transformation *trn2;
double edge;
if( im_iscomplex( in ) ) {
im_error( "im_affine", _( "complex input not supported" ) );
return( -1 );
}
/* We output at (0,0), so displace output by that amount -ve to get
* output at (ox,oy). Alter our copy of trn.
*/
if( !(trn2 = IM_NEW( out, Transformation )) )
return( -1 );
*trn2 = *trn;
trn2->oarea.left = -trn->oarea.left;
trn2->oarea.top = -trn->oarea.top;
if( im__transform_calc_inverse( trn2 ) )
return( -1 );
/* Make output image.
*/
if( im_piocheck( in, out ) )
return( -1 );
if( im_cp_desc( out, in ) )
return( -1 );
out->Xsize = trn2->oarea.width;
out->Ysize = trn2->oarea.height;
/* Normally SMALLTILE ... except if this is a size up/down affine.
*/
if( trn->b == 0.0 && trn->c == 0.0 ) {
if( im_demand_hint( out, IM_FATSTRIP, in, NULL ) )
return( -1 );
}
else {
if( im_demand_hint( out, IM_SMALLTILE, in, NULL ) )
return( -1 );
}
/* Check for coordinate overflow ... we want to be able to hold the
* output space inside INT_MAX / TRANSFORM_SCALE.
*/
edge = INT_MAX / TRANSFORM_SCALE;
if( trn2->oarea.left < -edge || trn2->oarea.top < -edge ||
IM_RECT_RIGHT( &trn2->oarea ) > edge ||
IM_RECT_BOTTOM( &trn2->oarea ) > edge ) {
im_error( "im_affine", _( "output coordinates out of range" ) );
return( -1 );
}
/* Generate!
*/
if( im_generate( out,
im_start_one, affine_gen, im_stop_one, in, trn2 ) )
return( -1 );
return( 0 );
}
/* As above, but do IM_CODING_LABQ too. And embed the input.
*/
int
im__affine( IMAGE *in, IMAGE *out, Transformation *trn )
{
IMAGE *t3 = im_open_local( out, "im_affine:3", "p" );
Transformation trn2;
#ifdef DEBUG_GEOMETRY
printf( "im__affine: %s\n", in->filename );
im__transform_print( trn );
#endif /*DEBUG_GEOMETRY*/
/* Add new pixels around the input so we can interpolate at the edges.
* Bilinear needs 0.5 pixels on all edges.
FIXME ... will need to fiddle with this when we add bicubic
*/
if( !t3 ||
im_embed( in, t3, 1,
1, 1, in->Xsize + 2, in->Ysize + 2 ) )
return( -1 );
/* Set iarea so we know what part of the input we can take.
*/
trn2 = *trn;
trn2.iarea.left += 1;
trn2.iarea.top += 1;
affine_interpol_calc();
if( in->Coding == IM_CODING_LABQ ) {
IMAGE *t1 = im_open_local( out, "im_affine:1", "p" );
IMAGE *t2 = im_open_local( out, "im_affine:2", "p" );
if( !t1 || !t2 ||
im_LabQ2LabS( t3, t1 ) ||
affine( t1, t2, &trn2 ) ||
im_LabS2LabQ( t2, out ) )
return( -1 );
}
else if( in->Coding == IM_CODING_NONE ) {
if( affine( t3, out, &trn2 ) )
return( -1 );
}
else {
im_error( "im_affine", _( "unknown coding type" ) );
return( -1 );
}
/* Finally: can now set Xoffset/Yoffset.
*/
out->Xoffset = trn->dx - trn->oarea.left;
out->Yoffset = trn->dy - trn->oarea.top;
return( 0 );
}
int
im_affine( IMAGE *in, IMAGE *out,
double a, double b, double c, double d,
double dx, double dy,
int ox, int oy, int ow, int oh )
{
Transformation trn;
trn.oarea.left = ox;
trn.oarea.top = oy;
trn.oarea.width = ow;
trn.oarea.height = oh;
trn.iarea.left = 0;
trn.iarea.top = 0;
trn.iarea.width = in->Xsize;
trn.iarea.height = in->Ysize;
trn.a = a;
trn.b = b;
trn.c = c;
trn.d = d;
trn.dx = dx;
trn.dy = dy;
return( im__affine( in, out, &trn ) );
}