331 lines
7.5 KiB
C
331 lines
7.5 KiB
C
/* invert a lut
|
|
*
|
|
* Written on: 5/6/01
|
|
* Modified on :
|
|
*
|
|
* 7/7/03 JC
|
|
* - generate image rather than doublemask (arrg)
|
|
* 23/3/10
|
|
* - gtkdoc
|
|
* 23/5/13
|
|
* - fix 1 high input matrices
|
|
* - fix file output
|
|
*/
|
|
|
|
/*
|
|
|
|
This file is part of VIPS.
|
|
|
|
VIPS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
|
|
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif /*HAVE_CONFIG_H*/
|
|
#include <vips/intl.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include <vips/vips.h>
|
|
|
|
/*
|
|
#define DEBUG
|
|
*/
|
|
|
|
/* Our state.
|
|
*/
|
|
typedef struct {
|
|
DOUBLEMASK *input; /* Input mask */
|
|
IMAGE *output; /* Output lut */
|
|
int lut_size; /* Number of output elements to generate */
|
|
|
|
double **data; /* Rows of unpacked matrix */
|
|
double *buf; /* Output buffer */
|
|
} State;
|
|
|
|
/* Use this to sort our input rows by the first column.
|
|
*/
|
|
static int
|
|
compare( const void *a, const void *b )
|
|
{
|
|
double **r1 = (double **) a;
|
|
double **r2 = (double **) b;
|
|
|
|
double diff = r1[0][0] - r2[0][0];
|
|
|
|
if( diff > 0 )
|
|
return( 1 );
|
|
else if( diff == 0 )
|
|
return( 0 );
|
|
else
|
|
return( -1 );
|
|
}
|
|
|
|
/* Free our state.
|
|
*/
|
|
static void
|
|
free_state( State *state )
|
|
{
|
|
if( state->data ) {
|
|
int i;
|
|
|
|
for( i = 0; i < state->input->ysize; i++ )
|
|
if( state->data[i] ) {
|
|
im_free( state->data[i] );
|
|
state->data[i] = NULL;
|
|
}
|
|
|
|
im_free( state->data );
|
|
state->data = NULL;
|
|
}
|
|
}
|
|
|
|
/* Fill our state.
|
|
*/
|
|
static int
|
|
build_state( State *state, DOUBLEMASK *input, IMAGE *output, int lut_size )
|
|
{
|
|
int x, y, i;
|
|
|
|
state->input = input;
|
|
state->output = output;
|
|
state->lut_size = lut_size;
|
|
state->data = NULL;
|
|
|
|
if( !(state->buf = im_malloc( NULL, IM_IMAGE_SIZEOF_LINE( output ) )) )
|
|
return( -1 );
|
|
|
|
if( !(state->data = IM_ARRAY( NULL, input->ysize, double * )) )
|
|
return( -1 );
|
|
for( y = 0; y < input->ysize; y++ )
|
|
state->data[y] = NULL;
|
|
|
|
for( y = 0; y < input->ysize; y++ )
|
|
if( !(state->data[y] = IM_ARRAY( NULL, input->xsize, double )) )
|
|
return( -1 );
|
|
|
|
for( i = 0, y = 0; y < input->ysize; y++ )
|
|
for( x = 0; x < input->xsize; x++, i++ )
|
|
state->data[y][x] = input->coeff[i];
|
|
|
|
/* Sanity check for data range.
|
|
*/
|
|
for( y = 0; y < input->ysize; y++ )
|
|
for( x = 0; x < input->xsize; x++ )
|
|
if( state->data[y][x] > 1.0 ||
|
|
state->data[y][x] < 0.0 ) {
|
|
im_error( "im_invertlut",
|
|
_( "element (%d, %d) is %g, "
|
|
"outside range [0,1]" ),
|
|
x, y, state->data[y][x] );
|
|
return( -1 );
|
|
}
|
|
|
|
/* Sort by 1st column in input.
|
|
*/
|
|
qsort( state->data, input->ysize, sizeof( double * ), compare );
|
|
|
|
#ifdef DEBUG
|
|
printf( "Input table, sorted by 1st column\n" );
|
|
for( y = 0; y < input->ysize; y++ ) {
|
|
printf( "%.4d ", y );
|
|
|
|
for( x = 0; x < input->xsize; x++ )
|
|
printf( "%.9f ", state->data[y][x] );
|
|
|
|
printf( "\n" );
|
|
}
|
|
#endif /*DEBUG*/
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
static int
|
|
invertlut( State *state )
|
|
{
|
|
DOUBLEMASK *input = state->input;
|
|
int ysize = input->ysize;
|
|
int xsize = input->xsize;
|
|
double *buf = state->buf;
|
|
int bands = xsize - 1;
|
|
double **data = state->data;
|
|
int lut_size = state->lut_size;
|
|
|
|
int b;
|
|
|
|
/* Do each output channel separately.
|
|
*/
|
|
for( b = 0; b < bands; b++ ) {
|
|
/* The first and last lut positions we know real values for.
|
|
*/
|
|
int first = data[0][b + 1] * (lut_size - 1);
|
|
int last = data[ysize - 1][b + 1] * (lut_size - 1);
|
|
|
|
int k;
|
|
|
|
/* Extrapolate bottom and top segments to (0,0) and (1,1).
|
|
*/
|
|
for( k = 0; k < first; k++ ) {
|
|
/* Have this inside the loop to avoid /0 errors if
|
|
* first == 0.
|
|
*/
|
|
double fac = data[0][0] / first;
|
|
|
|
buf[b + k * bands] = k * fac;
|
|
}
|
|
|
|
for( k = last; k < lut_size; k++ ) {
|
|
/* Inside the loop to avoid /0 errors for last ==
|
|
* (lut_size - 1).
|
|
*/
|
|
double fac = (1 - data[ysize - 1][0]) /
|
|
((lut_size - 1) - last);
|
|
|
|
buf[b + k * bands] =
|
|
data[ysize - 1][0] + (k - last) * fac;
|
|
}
|
|
|
|
/* Interpolate the data sections.
|
|
*/
|
|
for( k = first; k < last; k++ ) {
|
|
/* Where we're at in the [0,1] range.
|
|
*/
|
|
double ki = (double) k / (lut_size - 1);
|
|
|
|
double irange, orange;
|
|
int j;
|
|
|
|
/* Search for the lowest real value < ki. There may
|
|
* not be one: if not, just use 0. Tiny error.
|
|
*/
|
|
for( j = ysize - 1; j >= 0; j-- )
|
|
if( data[j][b + 1] < ki )
|
|
break;
|
|
if( j == -1 )
|
|
j = 0;
|
|
|
|
/* Interpolate k as being between row data[j] and row
|
|
* data[j + 1].
|
|
*/
|
|
irange = data[j + 1][b + 1] - data[j][b + 1];
|
|
orange = data[j + 1][0] - data[j][0];
|
|
|
|
buf[b + k * bands] = data[j][0] +
|
|
orange * ((ki - data[j][b + 1]) / irange);
|
|
}
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/**
|
|
* im_invertlut:
|
|
* @input: input mask
|
|
* @output: output LUT
|
|
* @lut_size: generate this much
|
|
*
|
|
* Given a mask of target values and real values, generate a LUT which
|
|
* will map reals to targets. Handy for linearising images from
|
|
* measurements of a colour chart. All values in [0,1]. Piecewise linear
|
|
* interpolation, extrapolate head and tail to 0 and 1.
|
|
*
|
|
* Eg. input like this:
|
|
*
|
|
* <tgroup cols='4' align='left' colsep='1' rowsep='1'>
|
|
* <tbody>
|
|
* <row>
|
|
* <entry>4</entry>
|
|
* <entry>3</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>0.1</entry>
|
|
* <entry>0.2</entry>
|
|
* <entry>0.3</entry>
|
|
* <entry>0.1</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>0.2</entry>
|
|
* <entry>0.4</entry>
|
|
* <entry>0.4</entry>
|
|
* <entry>0.2</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>0.7</entry>
|
|
* <entry>0.5</entry>
|
|
* <entry>0.6</entry>
|
|
* <entry>0.3</entry>
|
|
* </row>
|
|
* </tbody>
|
|
* </tgroup>
|
|
*
|
|
* Means a patch with 10% reflectance produces an image with 20% in
|
|
* channel 1, 30% in channel 2, and 10% in channel 3, and so on.
|
|
*
|
|
* Inputs don't need to be sorted (we do that). Generate any precision
|
|
* LUT, typically you might ask for 256 elements.
|
|
*
|
|
* It won't work too well for non-monotonic camera responses
|
|
* (we should fix this). Interpolation is simple piecewise linear; we ought to
|
|
* do something better really.
|
|
*
|
|
* See also: im_buildlut(), im_invertlut()
|
|
*
|
|
* Returns: 0 on success, -1 on error
|
|
*/
|
|
int
|
|
im_invertlut( DOUBLEMASK *input, IMAGE *output, int lut_size )
|
|
{
|
|
State state;
|
|
|
|
if( !input ||
|
|
input->xsize < 2 ||
|
|
input->ysize < 1 ) {
|
|
im_error( "im_invertlut", "%s", _( "bad input matrix" ) );
|
|
return( -1 );
|
|
}
|
|
if( lut_size < 1 ||
|
|
lut_size > 65536 ) {
|
|
im_error( "im_invertlut", "%s", _( "bad lut_size" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
im_initdesc( output,
|
|
lut_size, 1, input->xsize - 1,
|
|
IM_BBITS_DOUBLE, IM_BANDFMT_DOUBLE,
|
|
IM_CODING_NONE, IM_TYPE_HISTOGRAM, 1.0, 1.0, 0, 0 );
|
|
if( im_setupout( output ) )
|
|
return( -1 );
|
|
|
|
if( build_state( &state, input, output, lut_size ) ||
|
|
invertlut( &state ) ||
|
|
im_writeline( 0, output, (VipsPel *) state.buf ) ) {
|
|
free_state( &state );
|
|
return( -1 );
|
|
}
|
|
free_state( &state );
|
|
|
|
return( 0 );
|
|
}
|