libvips/libvips/histogram/im_invertlut.c
2013-07-01 13:45:36 +01:00

331 lines
7.5 KiB
C

/* invert a lut
*
* Written on: 5/6/01
* Modified on :
*
* 7/7/03 JC
* - generate image rather than doublemask (arrg)
* 23/3/10
* - gtkdoc
* 23/5/13
* - fix 1 high input matrices
* - fix file output
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vips/vips.h>
/*
#define DEBUG
*/
/* Our state.
*/
typedef struct {
DOUBLEMASK *input; /* Input mask */
IMAGE *output; /* Output lut */
int lut_size; /* Number of output elements to generate */
double **data; /* Rows of unpacked matrix */
double *buf; /* Output buffer */
} State;
/* Use this to sort our input rows by the first column.
*/
static int
compare( const void *a, const void *b )
{
double **r1 = (double **) a;
double **r2 = (double **) b;
double diff = r1[0][0] - r2[0][0];
if( diff > 0 )
return( 1 );
else if( diff == 0 )
return( 0 );
else
return( -1 );
}
/* Free our state.
*/
static void
free_state( State *state )
{
if( state->data ) {
int i;
for( i = 0; i < state->input->ysize; i++ )
if( state->data[i] ) {
im_free( state->data[i] );
state->data[i] = NULL;
}
im_free( state->data );
state->data = NULL;
}
}
/* Fill our state.
*/
static int
build_state( State *state, DOUBLEMASK *input, IMAGE *output, int lut_size )
{
int x, y, i;
state->input = input;
state->output = output;
state->lut_size = lut_size;
state->data = NULL;
if( !(state->buf = im_malloc( NULL, IM_IMAGE_SIZEOF_LINE( output ) )) )
return( -1 );
if( !(state->data = IM_ARRAY( NULL, input->ysize, double * )) )
return( -1 );
for( y = 0; y < input->ysize; y++ )
state->data[y] = NULL;
for( y = 0; y < input->ysize; y++ )
if( !(state->data[y] = IM_ARRAY( NULL, input->xsize, double )) )
return( -1 );
for( i = 0, y = 0; y < input->ysize; y++ )
for( x = 0; x < input->xsize; x++, i++ )
state->data[y][x] = input->coeff[i];
/* Sanity check for data range.
*/
for( y = 0; y < input->ysize; y++ )
for( x = 0; x < input->xsize; x++ )
if( state->data[y][x] > 1.0 ||
state->data[y][x] < 0.0 ) {
im_error( "im_invertlut",
_( "element (%d, %d) is %g, "
"outside range [0,1]" ),
x, y, state->data[y][x] );
return( -1 );
}
/* Sort by 1st column in input.
*/
qsort( state->data, input->ysize, sizeof( double * ), compare );
#ifdef DEBUG
printf( "Input table, sorted by 1st column\n" );
for( y = 0; y < input->ysize; y++ ) {
printf( "%.4d ", y );
for( x = 0; x < input->xsize; x++ )
printf( "%.9f ", state->data[y][x] );
printf( "\n" );
}
#endif /*DEBUG*/
return( 0 );
}
static int
invertlut( State *state )
{
DOUBLEMASK *input = state->input;
int ysize = input->ysize;
int xsize = input->xsize;
double *buf = state->buf;
int bands = xsize - 1;
double **data = state->data;
int lut_size = state->lut_size;
int b;
/* Do each output channel separately.
*/
for( b = 0; b < bands; b++ ) {
/* The first and last lut positions we know real values for.
*/
int first = data[0][b + 1] * (lut_size - 1);
int last = data[ysize - 1][b + 1] * (lut_size - 1);
int k;
/* Extrapolate bottom and top segments to (0,0) and (1,1).
*/
for( k = 0; k < first; k++ ) {
/* Have this inside the loop to avoid /0 errors if
* first == 0.
*/
double fac = data[0][0] / first;
buf[b + k * bands] = k * fac;
}
for( k = last; k < lut_size; k++ ) {
/* Inside the loop to avoid /0 errors for last ==
* (lut_size - 1).
*/
double fac = (1 - data[ysize - 1][0]) /
((lut_size - 1) - last);
buf[b + k * bands] =
data[ysize - 1][0] + (k - last) * fac;
}
/* Interpolate the data sections.
*/
for( k = first; k < last; k++ ) {
/* Where we're at in the [0,1] range.
*/
double ki = (double) k / (lut_size - 1);
double irange, orange;
int j;
/* Search for the lowest real value < ki. There may
* not be one: if not, just use 0. Tiny error.
*/
for( j = ysize - 1; j >= 0; j-- )
if( data[j][b + 1] < ki )
break;
if( j == -1 )
j = 0;
/* Interpolate k as being between row data[j] and row
* data[j + 1].
*/
irange = data[j + 1][b + 1] - data[j][b + 1];
orange = data[j + 1][0] - data[j][0];
buf[b + k * bands] = data[j][0] +
orange * ((ki - data[j][b + 1]) / irange);
}
}
return( 0 );
}
/**
* im_invertlut:
* @input: input mask
* @output: output LUT
* @lut_size: generate this much
*
* Given a mask of target values and real values, generate a LUT which
* will map reals to targets. Handy for linearising images from
* measurements of a colour chart. All values in [0,1]. Piecewise linear
* interpolation, extrapolate head and tail to 0 and 1.
*
* Eg. input like this:
*
* <tgroup cols='4' align='left' colsep='1' rowsep='1'>
* <tbody>
* <row>
* <entry>4</entry>
* <entry>3</entry>
* </row>
* <row>
* <entry>0.1</entry>
* <entry>0.2</entry>
* <entry>0.3</entry>
* <entry>0.1</entry>
* </row>
* <row>
* <entry>0.2</entry>
* <entry>0.4</entry>
* <entry>0.4</entry>
* <entry>0.2</entry>
* </row>
* <row>
* <entry>0.7</entry>
* <entry>0.5</entry>
* <entry>0.6</entry>
* <entry>0.3</entry>
* </row>
* </tbody>
* </tgroup>
*
* Means a patch with 10% reflectance produces an image with 20% in
* channel 1, 30% in channel 2, and 10% in channel 3, and so on.
*
* Inputs don't need to be sorted (we do that). Generate any precision
* LUT, typically you might ask for 256 elements.
*
* It won't work too well for non-monotonic camera responses
* (we should fix this). Interpolation is simple piecewise linear; we ought to
* do something better really.
*
* See also: im_buildlut(), im_invertlut()
*
* Returns: 0 on success, -1 on error
*/
int
im_invertlut( DOUBLEMASK *input, IMAGE *output, int lut_size )
{
State state;
if( !input ||
input->xsize < 2 ||
input->ysize < 1 ) {
im_error( "im_invertlut", "%s", _( "bad input matrix" ) );
return( -1 );
}
if( lut_size < 1 ||
lut_size > 65536 ) {
im_error( "im_invertlut", "%s", _( "bad lut_size" ) );
return( -1 );
}
im_initdesc( output,
lut_size, 1, input->xsize - 1,
IM_BBITS_DOUBLE, IM_BANDFMT_DOUBLE,
IM_CODING_NONE, IM_TYPE_HISTOGRAM, 1.0, 1.0, 0, 0 );
if( im_setupout( output ) )
return( -1 );
if( build_state( &state, input, output, lut_size ) ||
invertlut( &state ) ||
im_writeline( 0, output, (VipsPel *) state.buf ) ) {
free_state( &state );
return( -1 );
}
free_state( &state );
return( 0 );
}