libvips/libvips/deprecated/im_matinv.c
John Cupitt b085908558 remove vips7 stuff from API
You must now include vips7 support explicitly with

	#include <vips/vips7compat.h>

in your code just after including `vips.h`.

The old vips7 names, such as `Rect`, were starting to cause problems
with other packages like opencv.
2018-05-16 15:08:21 +01:00

540 lines
12 KiB
C

/* solve and invert matrices
*
* Author: Tom Vajzovic
* Copyright: 2006, Tom Vajzovic
* Written on: 2006-09-08
*
* undated:
* - page 43-45 of numerical recipes in C 1998
*
* 2006-09-08 tcv:
* - complete rewrite; algorithm unchanged
*
* 22/10/10
* - gtkdoc
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/** HEADERS **/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <vips/vips.h>
#include <vips/vips7compat.h>
/** CONSTANTS **/
#define TOO_SMALL ( 2.0 * DBL_MIN )
/* DBL_MIN is smallest *normalized* double precision float */
/** MACROS **/
#define MATRIX( mask, i, j ) ( (mask)-> coeff[ (j) + (i) * (mask)-> xsize ] )
/* use DOUBLEMASK or INTMASK as matrix type */
/** LOCAL FUNCTION DECLARATIONS **/
static int
mat_inv_lu(
DOUBLEMASK *inv,
const DOUBLEMASK *lu
);
static int
mat_inv_direct(
DOUBLEMASK *inv,
const DOUBLEMASK *mat,
const char *function_name
);
/** EXPORTED FUNCTION DEFINITIONS **/
/**
* im_lu_decomp:
* @mat: matrix to decompose
* @filename: name for output matrix
*
* This function takes any square NxN #DOUBLEMASK.
* It returns a #DOUBLEMASK which is (N+1)xN.
*
* It calculates the PLU decomposition, storing the upper and diagonal parts
* of U, together with the lower parts of L, as an NxN matrix in the first
* N rows of the new matrix. The diagonal parts of L are all set to unity
* and are not stored.
*
* The final row of the new #DOUBLEMASK has only integer entries, which
* represent the row-wise permutations made by the permuatation matrix P.
*
* The scale and offset members of the input #DOUBLEMASK are ignored.
*
* See:
*
* PRESS, W. et al, 1992. Numerical Recipies in C; The Art of Scientific
* Computing, 2nd ed. Cambridge: Cambridge University Press, pp. 43-50.
*
* See also: im_mattrn(), im_matinv().
*
* Returns: the decomposed matrix on success, or NULL on error.
*/
DOUBLEMASK *
im_lu_decomp(
const DOUBLEMASK *mat,
const char *name
){
#define FUNCTION_NAME "im_lu_decomp"
int i, j, k;
double *row_scale;
DOUBLEMASK *lu;
if( mat-> xsize != mat-> ysize ){
im_error( FUNCTION_NAME, "non-square matrix" );
return NULL;
}
#define N ( mat -> xsize )
lu= im_create_dmask( name, N, N + 1 );
row_scale= IM_ARRAY( NULL, N, double );
if( ! row_scale || ! lu ){
im_free_dmask( lu );
im_free( row_scale );
return NULL;
}
/* copy all coefficients and then perform decomposition in-place */
memcpy( lu-> coeff, mat-> coeff, N * N * sizeof( double ) );
#define LU( i, j ) MATRIX( lu, (i), (j) )
#define perm ( lu-> coeff + N * N )
for( i= 0; i < N; ++i ){
row_scale[ i ]= 0.0;
for( j= 0; j < N; ++j ){
double abs_val= fabs( LU( i, j ) );
/* find largest in each ROW */
if( abs_val > row_scale[ i ] )
row_scale[ i ]= abs_val;
}
if( ! row_scale[ i ] ){
im_error( FUNCTION_NAME, "singular matrix" );
im_free_dmask( lu );
im_free( row_scale );
return NULL;
}
/* fill array with scaling factors for each ROW */
row_scale[ i ]= 1.0 / row_scale[ i ];
}
for( j= 0; j < N; ++j ){ /* loop over COLs */
double max= -1.0;
int i_of_max;
/* not needed, but stops a compiler warning */
i_of_max= 0;
/* loop over ROWS in upper-half, except diagonal */
for( i= 0; i < j; ++i )
for( k= 0; k < i; ++k )
LU( i, j )-= LU( i, k ) * LU( k, j );
/* loop over ROWS in diagonal and lower-half */
for( i= j; i < N; ++i ){
double abs_val;
for( k= 0; k < j; ++k )
LU( i, j )-= LU( i, k ) * LU( k, j );
/* find largest element in each COLUMN scaled so that */
/* largest in each ROW is 1.0 */
abs_val= row_scale[ i ] * fabs( LU( i, j ) );
if( abs_val > max ){
max= abs_val;
i_of_max= i;
}
}
if( fabs( LU( i_of_max, j ) ) < TOO_SMALL ){
/* divisor is near zero */
im_error( FUNCTION_NAME, "singular or near-singular matrix" );
im_free_dmask( lu );
im_free( row_scale );
return NULL;
}
if( i_of_max != j ){
/* swap ROWS */
for( k= 0; k < N; ++k ){
double temp= LU( j, k );
LU( j, k )= LU( i_of_max, k );
LU( i_of_max, k )= temp;
}
row_scale[ i_of_max ]= row_scale[ j ];
/* no need to copy this scale back up - we won't use it */
}
/* record permutation */
perm[ j ]= i_of_max;
/* divide by best (largest scaled) pivot found */
for( i= j + 1; i < N; ++i )
LU( i, j )/= LU( j, j );
}
im_free( row_scale );
return lu;
#undef N
#undef LU
#undef perm
#undef FUNCTION_NAME
}
/**
* im_lu_solve:
* @lu: matrix to solve
* @vec: name for output matrix
*
* Solve the system of linear equations Ax=b, where matrix A has already
* been decomposed into LU form in DOUBLEMASK *lu. Input vector b is in
* vec and is overwritten with vector x.
*
* See:
*
* PRESS, W. et al, 1992. Numerical Recipies in C; The Art of Scientific
* Computing, 2nd ed. Cambridge: Cambridge University Press, pp. 43-50.
*
* See also: im_mattrn(), im_matinv().
*
* Returns: the decomposed matrix on success, or NULL on error.
*/
int
im_lu_solve(
const DOUBLEMASK *lu,
double *vec
){
#define FUNCTION_NAME "im_lu_solve"
int i, j;
if( lu-> xsize + 1 != lu-> ysize ){
im_error( FUNCTION_NAME, "not an LU decomposed matrix" );
return -1;
}
#define N ( lu -> xsize )
#define LU( i, j ) MATRIX( lu, (i), (j) )
#define perm ( lu-> coeff + N * N )
for( i= 0; i < N; ++i ){
int i_perm= perm[ i ];
if( i_perm != i ){
double temp= vec[ i ];
vec[ i ]= vec[ i_perm ];
vec[ i_perm ]= temp;
}
for( j= 0; j < i; ++j )
vec[ i ]-= LU( i, j ) * vec [ j ];
}
for( i= N - 1; i >= 0; --i ){
for( j= i + 1; j < N; ++j )
vec[ i ]-= LU( i, j ) * vec [ j ];
vec[ i ]/= LU( i, i );
}
return 0;
#undef LU
#undef perm
#undef N
#undef FUNCTION_NAME
}
/**
* im_matinv:
* @mat: matrix to invert
* @filename: name for output matrix
*
* Allocate, and return a pointer to, a DOUBLEMASK representing the
* inverse of the matrix represented in @mat. Give it the filename
* member @filename. Returns NULL on error. Scale and offset are ignored.
*
* See also: im_mattrn().
*
* Returns: the inverted matrix on success, or %NULL on error.
*/
DOUBLEMASK *
im_matinv(
const DOUBLEMASK *mat,
const char *filename
){
#define FUNCTION_NAME "im_matinv"
DOUBLEMASK *inv;
if( mat-> xsize != mat-> ysize ){
im_error( FUNCTION_NAME, "non-square matrix" );
return NULL;
}
#define N ( mat -> xsize )
inv= im_create_dmask( filename, N, N );
if( ! inv )
return NULL;
if( N < 4 ){
if( mat_inv_direct( inv, (const DOUBLEMASK *) mat, FUNCTION_NAME ) ){
im_free_dmask( inv );
return NULL;
}
return inv;
}
else {
DOUBLEMASK *lu= im_lu_decomp( mat, "temp" );
if( ! lu || mat_inv_lu( inv, (const DOUBLEMASK*) lu ) ){
im_free_dmask( lu );
im_free_dmask( inv );
return NULL;
}
im_free_dmask( lu );
return inv;
}
#undef N
#undef FUNCTION_NAME
}
/**
* im_matinv_inplace:
* @mat: matrix to invert
*
* Invert the matrix represented by the DOUBLEMASK @mat, and store
* it in the place of @mat. Scale and offset
* are ignored.
*
* See also: im_mattrn().
*
* Returns: 0 on success, or -1 on error.
*/
int
im_matinv_inplace(
DOUBLEMASK *mat
){
#define FUNCTION_NAME "im_matinv_inplace"
int to_return= 0;
if( mat-> xsize != mat-> ysize ){
im_error( FUNCTION_NAME, "non-square matrix" );
return -1;
}
#define N ( mat -> xsize )
if( N < 4 ){
DOUBLEMASK *dup= im_dup_dmask( mat, "temp" );
if( ! dup )
return -1;
to_return= mat_inv_direct( mat, (const DOUBLEMASK*) dup, FUNCTION_NAME );
im_free_dmask( dup );
return to_return;
}
{
DOUBLEMASK *lu;
lu= im_lu_decomp( mat, "temp" );
if( ! lu || mat_inv_lu( mat, (const DOUBLEMASK*) lu ) )
to_return= -1;
im_free_dmask( lu );
return to_return;
}
#undef N
#undef FUNCTION_NAME
}
/* Invert a square size x size matrix stored in matrix[][]
* result is returned in the same matrix
*/
int
im_invmat(
double **matrix,
int size
){
DOUBLEMASK *mat= im_create_dmask( "temp", size, size );
int i;
int to_return= 0;
for( i= 0; i < size; ++i )
memcpy( mat-> coeff + i * size, matrix[ i ], size * sizeof( double ) );
to_return= im_matinv_inplace( mat );
if( ! to_return )
for( i= 0; i < size; ++i )
memcpy( matrix[ i ], mat-> coeff + i * size, size * sizeof( double ) );
im_free_dmask( mat );
return to_return;
}
/** LOCAL FUNCTION DEFINITIONS **/
static int
mat_inv_lu(
DOUBLEMASK *inv,
const DOUBLEMASK *lu
){
#define N ( lu-> xsize )
#define INV( i, j ) MATRIX( inv, (i), (j) )
int i, j;
double *vec= IM_ARRAY( NULL, N, double );
if( ! vec )
return -1;
for( j= 0; j < N; ++j ){
for( i= 0; i < N; ++i )
vec[ i ]= 0.0;
vec[ j ]= 1.0;
im_lu_solve( lu, vec );
for( i= 0; i < N; ++i )
INV( i, j )= vec[ i ];
}
im_free( vec );
inv-> scale= 1.0;
inv-> offset= 0.0;
return 0;
#undef N
#undef INV
}
static int
mat_inv_direct(
DOUBLEMASK *inv,
const DOUBLEMASK *mat,
const char *function_name
){
#define N ( mat -> xsize )
#define MAT( i, j ) MATRIX( mat, (i), (j) )
#define INV( i, j ) MATRIX( inv, (i), (j) )
inv-> scale= 1.0;
inv-> offset= 0.0;
switch( N ){
case 1: {
if( fabs( MAT( 0, 0 ) ) < TOO_SMALL ){
im_error( function_name, "singular or near-singular matrix" );
return -1;
}
INV( 0, 0 )= 1.0 / MAT( 0, 0 );
return 0;
}
case 2: {
double det= MAT( 0, 0 ) * MAT( 1, 1 ) - MAT( 0, 1 ) * MAT( 1, 0 );
if( fabs( det ) < TOO_SMALL ){
im_error( function_name, "singular or near-singular matrix" );
return -1;
}
INV( 0, 0 )= MAT( 1, 1 ) / det;
INV( 0, 1 )= -MAT( 0, 1 ) / det;
INV( 1, 0 )= -MAT( 1, 0 ) / det;
INV( 1, 1 )= MAT( 0, 0 ) / det;
return 0;
}
case 3: {
double det= MAT( 0, 0 ) * ( MAT( 1, 1 ) * MAT( 2, 2 ) - MAT( 1, 2 ) * MAT( 2, 1 ) )
- MAT( 0, 1 ) * ( MAT( 1, 0 ) * MAT( 2, 2 ) - MAT( 1, 2 ) * MAT( 2, 0 ) )
+ MAT( 0, 2 ) * ( MAT( 1, 0 ) * MAT( 2, 1 ) - MAT( 1, 1 ) * MAT( 2, 0 ) );
if( fabs( det ) < TOO_SMALL ){
im_error( function_name, "singular or near-singular matrix" );
return -1;
}
INV( 0, 0 )= ( MAT( 1, 1 ) * MAT( 2, 2 ) - MAT( 1, 2 ) * MAT( 2, 1 ) ) / det;
INV( 0, 1 )= ( MAT( 0, 2 ) * MAT( 2, 1 ) - MAT( 0, 1 ) * MAT( 2, 2 ) ) / det;
INV( 0, 2 )= ( MAT( 0, 1 ) * MAT( 1, 2 ) - MAT( 0, 2 ) * MAT( 1, 1 ) ) / det;
INV( 1, 0 )= ( MAT( 1, 2 ) * MAT( 2, 0 ) - MAT( 1, 0 ) * MAT( 2, 2 ) ) / det;
INV( 1, 1 )= ( MAT( 0, 0 ) * MAT( 2, 2 ) - MAT( 0, 2 ) * MAT( 2, 0 ) ) / det;
INV( 1, 2 )= ( MAT( 0, 2 ) * MAT( 1, 0 ) - MAT( 0, 0 ) * MAT( 1, 2 ) ) / det;
INV( 2, 0 )= ( MAT( 1, 0 ) * MAT( 2, 1 ) - MAT( 1, 1 ) * MAT( 2, 0 ) ) / det;
INV( 2, 1 )= ( MAT( 0, 1 ) * MAT( 2, 0 ) - MAT( 0, 0 ) * MAT( 2, 1 ) ) / det;
INV( 2, 2 )= ( MAT( 0, 0 ) * MAT( 1, 1 ) - MAT( 0, 1 ) * MAT( 1, 0 ) ) / det;
return 0;
}
default:
return -1;
}
#undef N
#undef MAT
#undef INV
}