801 lines
22 KiB
C++
801 lines
22 KiB
C++
/* yafrsmooth interpolator
|
|
*/
|
|
|
|
/*
|
|
|
|
This file is part of VIPS.
|
|
|
|
VIPS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
|
|
|
|
*/
|
|
|
|
/*
|
|
* 2008 (c) Nicolas Robidoux (developer of Yet Another Fast
|
|
* Resampler).
|
|
*
|
|
* Acknowledgement: N. Robidoux's research on YAFRSMOOTH funded in part by
|
|
* an NSERC (National Science and Engineering Research Council of
|
|
* Canada) Discovery Grant.
|
|
*/
|
|
|
|
/* Hacked for vips by J. Cupitt, 12/11/08.
|
|
*
|
|
* Bicubic component replaced with the one from bicubbic.cpp.
|
|
*/
|
|
|
|
/*
|
|
* YAFRSMOOTH = Yet Another Fast Resampler
|
|
*
|
|
* Yet Another Fast Resampler is a nonlinear resampler which consists
|
|
* of a linear scheme (in this version, Catmull-Rom) plus a nonlinear
|
|
* sharpening correction the purpose of which is the straightening of
|
|
* diagonal interfaces between flat colour areas.
|
|
*
|
|
* Key properties:
|
|
*
|
|
* YAFRSMOOTH (smooth) is interpolatory:
|
|
*
|
|
* If asked for the value at the center of an input pixel, it will
|
|
* return the corresponding value, unchanged.
|
|
*
|
|
* YAFRSMOOTH (smooth) preserves local averages:
|
|
*
|
|
* The average of the reconstructed intensity surface over any region
|
|
* is the same as the average of the piecewise constant surface with
|
|
* values over pixel areas equal to the input pixel values (the
|
|
* "nearest neighbour" surface), except for a small amount of blur at
|
|
* the boundary of the region. More precicely: YAFRSMOOTH (smooth) is a box
|
|
* filtered exact area method.
|
|
*
|
|
* Main weaknesses of YAFRSMOOTH (smooth):
|
|
*
|
|
* Weakness 1: YAFRSMOOTH (smooth) improves on Catmull-Rom only for images
|
|
* with at least a little bit of smoothness.
|
|
*
|
|
* Weakness 2: Catmull-Rom introduces a lot of haloing. YAFRSMOOTH (smooth)
|
|
* is based on Catmull-Rom, and consequently it too introduces a lot
|
|
* of haloing.
|
|
*
|
|
* More details regarding Weakness 1:
|
|
*
|
|
* If a portion of the image is such that every pixel has immediate
|
|
* neighbours in the horizontal and vertical directions which have
|
|
* exactly the same pixel value, then YAFRSMOOTH (smooth) boils down to
|
|
* Catmull-Rom, and the computation of the correction is a waste.
|
|
* Extreme case: If all the pixels are either pure black or pure white
|
|
* in some region, as in some text images (more generally, if the
|
|
* region is "bichromatic"), then the YAFRSMOOTH (smooth) correction is 0 in
|
|
* the interior of the bichromatic region.
|
|
*/
|
|
|
|
|
|
/*
|
|
#define DEBUG
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif /*HAVE_CONFIG_H*/
|
|
#include <vips/intl.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <vips/vips.h>
|
|
#include <vips/internal.h>
|
|
|
|
#include "templates.h"
|
|
|
|
#ifdef WITH_DMALLOC
|
|
#include <dmalloc.h>
|
|
#endif /*WITH_DMALLOC*/
|
|
|
|
/* "fast" floor() ... on my laptop, anyway.
|
|
*/
|
|
#define FLOOR( V ) ((V) >= 0 ? (int)(V) : (int)((V) - 1))
|
|
|
|
#ifndef restrict
|
|
#ifdef __restrict
|
|
#define restrict __restrict
|
|
#else
|
|
#ifdef __restrict__
|
|
#define restrict __restrict__
|
|
#else
|
|
#define restrict
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
/* Scale sharpening by this to normalise.
|
|
*/
|
|
#define SMOOTH_SHARPENING_SCALE (0.453125f)
|
|
|
|
/* Properties.
|
|
*/
|
|
enum {
|
|
PROP_SHARPENING = 1,
|
|
PROP_LAST
|
|
};
|
|
|
|
|
|
#define VIPS_TYPE_INTERPOLATE_YAFRSMOOTH \
|
|
(vips_interpolate_yafrsmooth_get_type())
|
|
#define VIPS_INTERPOLATE_YAFRSMOOTH( obj ) \
|
|
(G_TYPE_CHECK_INSTANCE_CAST( (obj), \
|
|
VIPS_TYPE_INTERPOLATE_YAFRSMOOTH, VipsInterpolateYafrsmooth ))
|
|
#define VIPS_INTERPOLATE_YAFRSMOOTH_CLASS( klass ) \
|
|
(G_TYPE_CHECK_CLASS_CAST( (klass), \
|
|
VIPS_TYPE_INTERPOLATE_YAFRSMOOTH, VipsInterpolateYafrsmoothClass))
|
|
#define VIPS_IS_INTERPOLATE_YAFRSMOOTH( obj ) \
|
|
(G_TYPE_CHECK_INSTANCE_TYPE( (obj), VIPS_TYPE_INTERPOLATE_YAFRSMOOTH ))
|
|
#define VIPS_IS_INTERPOLATE_YAFRSMOOTH_CLASS( klass ) \
|
|
(G_TYPE_CHECK_CLASS_TYPE( (klass), VIPS_TYPE_INTERPOLATE_YAFRSMOOTH ))
|
|
#define VIPS_INTERPOLATE_YAFRSMOOTH_GET_CLASS( obj ) \
|
|
(G_TYPE_INSTANCE_GET_CLASS( (obj), \
|
|
VIPS_TYPE_INTERPOLATE_YAFRSMOOTH, VipsInterpolateYafrsmoothClass ))
|
|
|
|
typedef struct _VipsInterpolateYafrsmooth {
|
|
VipsInterpolate parent_object;
|
|
|
|
/* "sharpening" is a continuous method parameter which is
|
|
* proportional to the amount of "diagonal straightening" which the
|
|
* nonlinear correction part of the method may add to the underlying
|
|
* linear scheme. You may also think of it as a sharpening
|
|
* parameter: higher values correspond to more sharpening, and
|
|
* negative values lead to strange looking effects.
|
|
*
|
|
* The default value is sharpening = 29/32 when the scheme being
|
|
* "straightened" is Catmull-Rom---as is the case here. This value
|
|
* fixes key pixel values near the diagonal boundary between two
|
|
* monochrome regions (the diagonal boundary pixel values being set
|
|
* to the halfway colour).
|
|
*
|
|
* If resampling seems to add unwanted texture artifacts, push
|
|
* sharpening toward 0. It is not generally not recommended to set
|
|
* sharpening to a value larger than 4.
|
|
*
|
|
* Sharpening is halved because the .5 which has to do with the
|
|
* relative coordinates of the evaluation points (which has to do
|
|
* with .5*rite_width etc) is folded into the constant to save
|
|
* flops. Consequently, the largest recommended value of
|
|
* sharpening_over_two is 2=4/2.
|
|
*
|
|
* In order to simplify interfacing with users, the parameter which
|
|
* should be set by the user is normalized so that user_sharpening =
|
|
* 1 when sharpening is equal to the recommended value. Consistently
|
|
* with the above discussion, values of user_sharpening between 0
|
|
* and about 3.625 give good results.
|
|
*/
|
|
double sharpening;
|
|
} VipsInterpolateYafrsmooth;
|
|
|
|
typedef struct _VipsInterpolateYafrsmoothClass {
|
|
VipsInterpolateClass parent_class;
|
|
|
|
/* Precalculated interpolation matricies. int (used for pel sizes up
|
|
* to short), and double (for all others). We go to scale + 1, so
|
|
* we can round-to-nearest safely.
|
|
*/
|
|
|
|
/* We could keep a large set of 2d 4x4 matricies, but this actually
|
|
* works out slower, since for many resizes the thing will no longer
|
|
* fit in L1.
|
|
*/
|
|
int matrixi[VIPS_TRANSFORM_SCALE + 1][4];
|
|
double matrixf[VIPS_TRANSFORM_SCALE + 1][4];
|
|
} VipsInterpolateYafrsmoothClass;
|
|
|
|
/* We need C linkage for this.
|
|
*/
|
|
extern "C" {
|
|
G_DEFINE_TYPE( VipsInterpolateYafrsmooth, vips_interpolate_yafrsmooth,
|
|
VIPS_TYPE_INTERPOLATE );
|
|
}
|
|
|
|
/* T is the type of pixels we are computing, D is a type large enough to hold
|
|
* (Ta - Tb) ** 2.
|
|
*/
|
|
|
|
/* The 16 values for this interpolation, four constants for this
|
|
* interpolation position.
|
|
*/
|
|
|
|
template <typename T, typename D> static float inline
|
|
yafrsmooth(
|
|
const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
|
|
const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
|
|
const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
|
|
const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
|
|
const double *c )
|
|
{
|
|
/*
|
|
* Computation of the YAFRSMOOTH correction:
|
|
*
|
|
* Basically, if two consecutive pixel value differences have the
|
|
* same sign, the smallest one (in absolute value) is taken to be
|
|
* the corresponding slope. If they don't have the same sign, the
|
|
* corresponding slope is set to 0.
|
|
*
|
|
* Four such pairs (vertical and horizontal) of slopes need to be
|
|
* computed, one pair for each of the pixels which potentially
|
|
* overlap the unit area centered at the interpolation point.
|
|
*/
|
|
/*
|
|
* Beginning of the computation of the "up" horizontal slopes:
|
|
*/
|
|
const D prem__up = dos_two - dos_one;
|
|
const D deux__up = dos_thr - dos_two;
|
|
const D troi__up = dos_fou - dos_thr;
|
|
/*
|
|
* "down" horizontal slopes:
|
|
*/
|
|
const D prem_dow = tre_two - tre_one;
|
|
const D deux_dow = tre_thr - tre_two;
|
|
const D troi_dow = tre_fou - tre_thr;
|
|
/*
|
|
* "left" vertical slopes:
|
|
*/
|
|
const D prem_left = dos_two - uno_two;
|
|
const D deux_left = tre_two - dos_two;
|
|
const D troi_left = qua_two - tre_two;
|
|
/*
|
|
* "right" vertical slopes:
|
|
*/
|
|
const D prem_rite = dos_thr - uno_thr;
|
|
const D deux_rite = tre_thr - dos_thr;
|
|
const D troi_rite = qua_thr - tre_thr;
|
|
|
|
/*
|
|
* Back to "up":
|
|
*/
|
|
const D prem__up_squared = prem__up * prem__up;
|
|
const D deux__up_squared = deux__up * deux__up;
|
|
const D troi__up_squared = troi__up * troi__up;
|
|
/*
|
|
* Back to "down":
|
|
*/
|
|
const D prem_dow_squared = prem_dow * prem_dow;
|
|
const D deux_dow_squared = deux_dow * deux_dow;
|
|
const D troi_dow_squared = troi_dow * troi_dow;
|
|
/*
|
|
* Back to "left":
|
|
*/
|
|
const D prem_left_squared = prem_left * prem_left;
|
|
const D deux_left_squared = deux_left * deux_left;
|
|
const D troi_left_squared = troi_left * troi_left;
|
|
/*
|
|
* Back to "right":
|
|
*/
|
|
const D prem_rite_squared = prem_rite * prem_rite;
|
|
const D deux_rite_squared = deux_rite * deux_rite;
|
|
const D troi_rite_squared = troi_rite * troi_rite;
|
|
|
|
/*
|
|
* "up":
|
|
*/
|
|
const D prem__up_times_deux__up = prem__up * deux__up;
|
|
const D deux__up_times_troi__up = deux__up * troi__up;
|
|
/*
|
|
* "down":
|
|
*/
|
|
const D prem_dow_times_deux_dow = prem_dow * deux_dow;
|
|
const D deux_dow_times_troi_dow = deux_dow * troi_dow;
|
|
/*
|
|
* "left":
|
|
*/
|
|
const D prem_left_times_deux_left = prem_left * deux_left;
|
|
const D deux_left_times_troi_left = deux_left * troi_left;
|
|
/*
|
|
* "right":
|
|
*/
|
|
const D prem_rite_times_deux_rite = prem_rite * deux_rite;
|
|
const D deux_rite_times_troi_rite = deux_rite * troi_rite;
|
|
|
|
/*
|
|
* Branching parts of the computation of the YAFRSMOOTH correction
|
|
* (could be unbranched using arithmetic branching and C99 math
|
|
* intrinsics, although the compiler may be smart enough to remove
|
|
* the branching on its own):
|
|
*/
|
|
/*
|
|
* "up":
|
|
*/
|
|
const D prem__up_vs_deux__up =
|
|
prem__up_squared < deux__up_squared ? prem__up : deux__up;
|
|
const D deux__up_vs_troi__up =
|
|
deux__up_squared < troi__up_squared ? deux__up : troi__up;
|
|
/*
|
|
* "down":
|
|
*/
|
|
const D prem_dow_vs_deux_dow =
|
|
prem_dow_squared < deux_dow_squared ? prem_dow : deux_dow;
|
|
const D deux_dow_vs_troi_dow =
|
|
deux_dow_squared < troi_dow_squared ? deux_dow : troi_dow;
|
|
/*
|
|
* "left":
|
|
*/
|
|
const D prem_left_vs_deux_left =
|
|
prem_left_squared < deux_left_squared ? prem_left : deux_left;
|
|
const D deux_left_vs_troi_left =
|
|
deux_left_squared < troi_left_squared ? deux_left : troi_left;
|
|
/*
|
|
* "right":
|
|
*/
|
|
const D prem_rite_vs_deux_rite =
|
|
prem_rite_squared < deux_rite_squared ? prem_rite : deux_rite;
|
|
const D deux_rite_vs_troi_rite =
|
|
deux_rite_squared < troi_rite_squared ? deux_rite : troi_rite;
|
|
|
|
/*
|
|
* Computation of the YAFRSMOOTH slopes.
|
|
*/
|
|
/*
|
|
* "up":
|
|
*/
|
|
const D mx_left__up =
|
|
prem__up_times_deux__up < 0.f ? 0.f : prem__up_vs_deux__up;
|
|
const D mx_rite__up =
|
|
deux__up_times_troi__up < 0.f ? 0.f : deux__up_vs_troi__up;
|
|
/*
|
|
* "down":
|
|
*/
|
|
const D mx_left_dow =
|
|
prem_dow_times_deux_dow < 0.f ? 0.f : prem_dow_vs_deux_dow;
|
|
const D mx_rite_dow =
|
|
deux_dow_times_troi_dow < 0.f ? 0.f : deux_dow_vs_troi_dow;
|
|
/*
|
|
* "left":
|
|
*/
|
|
const D my_left__up =
|
|
prem_left_times_deux_left < 0.f ? 0.f : prem_left_vs_deux_left;
|
|
const D my_left_dow =
|
|
deux_left_times_troi_left < 0.f ? 0.f : deux_left_vs_troi_left;
|
|
/*
|
|
* "right":
|
|
*/
|
|
const D my_rite__up =
|
|
prem_rite_times_deux_rite < 0.f ? 0.f : prem_rite_vs_deux_rite;
|
|
const D my_rite_dow =
|
|
deux_rite_times_troi_rite < 0.f ? 0.f : deux_rite_vs_troi_rite;
|
|
|
|
/*
|
|
* Assemble the unweighted YAFRSMOOTH correction:
|
|
*/
|
|
const float yafr =
|
|
c[0] * (mx_left__up - mx_rite__up) +
|
|
c[1] * (mx_left_dow - mx_rite_dow) +
|
|
c[2] * (my_left__up - my_left_dow) +
|
|
c[3] * (my_rite__up - my_rite_dow);
|
|
|
|
return( yafr );
|
|
}
|
|
|
|
/* Pointers to write to / read from, number of bands,
|
|
* how many bytes to add to move down a line.
|
|
*/
|
|
|
|
/* T is the type of pixels we are reading and writing, D is a type large
|
|
* enough to hold (T1 - T2) ** 2.
|
|
*/
|
|
|
|
/* Fixed-point version for 8/16 bit ints.
|
|
*/
|
|
template <typename T, typename D, int min_value, int max_value>
|
|
static void inline
|
|
yafrsmooth_int_tab( PEL *pout, const PEL *pin,
|
|
const int bands, const int lskip,
|
|
const double sharpening,
|
|
const int *cx, const int *cy, const double *cs )
|
|
{
|
|
T* restrict out = (T *) pout;
|
|
const T* restrict in = (T *) pin;
|
|
|
|
const int b1 = bands;
|
|
const int b2 = 2 * bands;
|
|
const int b3 = 3 * bands;
|
|
|
|
const int l1 = lskip / sizeof( T );
|
|
const int l2 = 2 * lskip / sizeof( T );
|
|
const int l3 = 3 * lskip / sizeof( T );
|
|
|
|
for( int z = 0; z < bands; z++ ) {
|
|
|
|
const T uno_one = in[0];
|
|
const T uno_two = in[b1];
|
|
const T uno_thr = in[b2];
|
|
const T uno_fou = in[b3];
|
|
|
|
const T dos_one = in[l1];
|
|
const T dos_two = in[b1 + l1];
|
|
const T dos_thr = in[b2 + l1];
|
|
const T dos_fou = in[b3 + l1];
|
|
|
|
const T tre_one = in[l2];
|
|
const T tre_two = in[b1 + l2];
|
|
const T tre_thr = in[b2 + l2];
|
|
const T tre_fou = in[b3 + l2];
|
|
|
|
const T qua_one = in[l3];
|
|
const T qua_two = in[b1 + l3];
|
|
const T qua_thr = in[b2 + l3];
|
|
const T qua_fou = in[b3 + l3];
|
|
|
|
const int bicubic = bicubic_int<T>(
|
|
uno_one, uno_two, uno_thr, uno_fou,
|
|
dos_one, dos_two, dos_thr, dos_fou,
|
|
tre_one, tre_two, tre_thr, tre_fou,
|
|
qua_one, qua_two, qua_thr, qua_fou,
|
|
cx, cy );
|
|
|
|
const float yafr = yafrsmooth<T, D>(
|
|
uno_one, uno_two, uno_thr, uno_fou,
|
|
dos_one, dos_two, dos_thr, dos_fou,
|
|
tre_one, tre_two, tre_thr, tre_fou,
|
|
qua_one, qua_two, qua_thr, qua_fou,
|
|
cs );
|
|
|
|
int result = bicubic +
|
|
sharpening * SMOOTH_SHARPENING_SCALE * yafr;
|
|
|
|
if( result < min_value )
|
|
result = min_value;
|
|
else if( result > max_value )
|
|
result = max_value;
|
|
|
|
*out = result;
|
|
|
|
in += 1;
|
|
out += 1;
|
|
}
|
|
}
|
|
|
|
/* Float version for int/float types.
|
|
*/
|
|
template <typename T, typename D> static void inline
|
|
yafrsmooth_float_tab( PEL *pout, const PEL *pin,
|
|
const int bands, const int lskip,
|
|
const double sharpening,
|
|
const double *cx, const double *cy, const double *cs )
|
|
{
|
|
T* restrict out = (T *) pout;
|
|
const T* restrict in = (T *) pin;
|
|
|
|
const int b1 = bands;
|
|
const int b2 = 2 * bands;
|
|
const int b3 = 3 * bands;
|
|
|
|
const int l1 = lskip / sizeof( T );
|
|
const int l2 = 2 * lskip / sizeof( T );
|
|
const int l3 = 3 * lskip / sizeof( T );
|
|
|
|
for( int z = 0; z < bands; z++ ) {
|
|
|
|
const T uno_one = in[0];
|
|
const T uno_two = in[b1];
|
|
const T uno_thr = in[b2];
|
|
const T uno_fou = in[b3];
|
|
|
|
const T dos_one = in[l1];
|
|
const T dos_two = in[b1 + l1];
|
|
const T dos_thr = in[b2 + l1];
|
|
const T dos_fou = in[b3 + l1];
|
|
|
|
const T tre_one = in[l2];
|
|
const T tre_two = in[b1 + l2];
|
|
const T tre_thr = in[b2 + l2];
|
|
const T tre_fou = in[b3 + l2];
|
|
|
|
const T qua_one = in[l3];
|
|
const T qua_two = in[b1 + l3];
|
|
const T qua_thr = in[b2 + l3];
|
|
const T qua_fou = in[b3 + l3];
|
|
|
|
const T bicubic = bicubic_float<T>(
|
|
uno_one, uno_two, uno_thr, uno_fou,
|
|
dos_one, dos_two, dos_thr, dos_fou,
|
|
tre_one, tre_two, tre_thr, tre_fou,
|
|
qua_one, qua_two, qua_thr, qua_fou,
|
|
cx, cy );
|
|
|
|
const float yafr = yafrsmooth<T, D>(
|
|
uno_one, uno_two, uno_thr, uno_fou,
|
|
dos_one, dos_two, dos_thr, dos_fou,
|
|
tre_one, tre_two, tre_thr, tre_fou,
|
|
qua_one, qua_two, qua_thr, qua_fou,
|
|
cs );
|
|
|
|
*out = bicubic + sharpening * SMOOTH_SHARPENING_SCALE * yafr;
|
|
|
|
in += 1;
|
|
out += 1;
|
|
}
|
|
}
|
|
|
|
/* Given an offset in [0,1], calculate c0, c1, c2, c3, the yafr-smooth pixel
|
|
* weights.
|
|
*/
|
|
static void inline
|
|
calculate_coefficients_smooth( const double x, const double y, double c[4] )
|
|
{
|
|
const double dx = 1.f - x;
|
|
const double dy = 1.f - y;
|
|
|
|
g_assert( x >= 0 && x < 1 );
|
|
g_assert( y >= 0 && y < 1 );
|
|
|
|
c[0] = dx * x * dy;
|
|
c[1] = dx * x * y;
|
|
c[2] = dy * y * dx;
|
|
c[3] = dy * y * x;
|
|
}
|
|
|
|
/* High-quality double-only version.
|
|
*/
|
|
static void inline
|
|
yafrsmooth_notab( PEL *pout, const PEL *pin,
|
|
const int bands, const int lskip,
|
|
const double sharpening,
|
|
double x, double y )
|
|
{
|
|
double * restrict out = (double *) pout;
|
|
const double * restrict in = (double *) pin;
|
|
|
|
const int b1 = bands;
|
|
const int b2 = 2 * bands;
|
|
const int b3 = 3 * bands;
|
|
|
|
const int l1 = lskip / sizeof( double );
|
|
const int l2 = 2 * lskip / sizeof( double );
|
|
const int l3 = 3 * lskip / sizeof( double );
|
|
|
|
double cx[4];
|
|
double cy[4];
|
|
|
|
calculate_coefficients_catmull( x, cx );
|
|
calculate_coefficients_catmull( y, cy );
|
|
|
|
double cs[4];
|
|
|
|
calculate_coefficients_smooth( x, y, cs );
|
|
|
|
for( int z = 0; z < bands; z++ ) {
|
|
const double uno_one = in[0];
|
|
const double uno_two = in[b1];
|
|
const double uno_thr = in[b2];
|
|
const double uno_fou = in[b3];
|
|
|
|
const double dos_one = in[l1];
|
|
const double dos_two = in[b1 + l1];
|
|
const double dos_thr = in[b2 + l1];
|
|
const double dos_fou = in[b3 + l1];
|
|
|
|
const double tre_one = in[l2];
|
|
const double tre_two = in[b1 + l2];
|
|
const double tre_thr = in[b2 + l2];
|
|
const double tre_fou = in[b3 + l2];
|
|
|
|
const double qua_one = in[l3];
|
|
const double qua_two = in[b1 + l3];
|
|
const double qua_thr = in[b2 + l3];
|
|
const double qua_fou = in[b3 + l3];
|
|
|
|
const double bicubic = bicubic_float<double>(
|
|
uno_one, uno_two, uno_thr, uno_fou,
|
|
dos_one, dos_two, dos_thr, dos_fou,
|
|
tre_one, tre_two, tre_thr, tre_fou,
|
|
qua_one, qua_two, qua_thr, qua_fou,
|
|
cx, cy );
|
|
|
|
const double yafr = yafrsmooth<double, double>(
|
|
uno_one, uno_two, uno_thr, uno_fou,
|
|
dos_one, dos_two, dos_thr, dos_fou,
|
|
tre_one, tre_two, tre_thr, tre_fou,
|
|
qua_one, qua_two, qua_thr, qua_fou,
|
|
cs );
|
|
|
|
*out = bicubic + sharpening * SMOOTH_SHARPENING_SCALE * yafr;
|
|
|
|
in += 1;
|
|
out += 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vips_interpolate_yafrsmooth_interpolate( VipsInterpolate *interpolate,
|
|
PEL *out, REGION *in, double x, double y )
|
|
{
|
|
VipsInterpolateYafrsmoothClass *yafrsmooth_class =
|
|
VIPS_INTERPOLATE_YAFRSMOOTH_GET_CLASS( interpolate );
|
|
VipsInterpolateYafrsmooth *yafrsmooth =
|
|
VIPS_INTERPOLATE_YAFRSMOOTH( interpolate );
|
|
|
|
/* Scaled int.
|
|
*/
|
|
const double sx = x * VIPS_TRANSFORM_SCALE;
|
|
const double sy = y * VIPS_TRANSFORM_SCALE;
|
|
const int sxi = FLOOR( sx );
|
|
const int syi = FLOOR( sy );
|
|
|
|
/* Get index into interpolation table and unscaled integer
|
|
* position.
|
|
*/
|
|
const int tx = sxi & (VIPS_TRANSFORM_SCALE - 1);
|
|
const int ty = syi & (VIPS_TRANSFORM_SCALE - 1);
|
|
const int xi = sxi >> VIPS_TRANSFORM_SHIFT;
|
|
const int yi = syi >> VIPS_TRANSFORM_SHIFT;
|
|
|
|
/* Look up the tables we need.
|
|
*/
|
|
const int *cxi = yafrsmooth_class->matrixi[tx];
|
|
const int *cyi = yafrsmooth_class->matrixi[ty];
|
|
const double *cxf = yafrsmooth_class->matrixf[tx];
|
|
const double *cyf = yafrsmooth_class->matrixf[ty];
|
|
|
|
/* Position weights for yafrsmooth.
|
|
*/
|
|
double cs[4];
|
|
calculate_coefficients_smooth( x - xi, y - yi, cs );
|
|
|
|
/* Back and up one to get the top-left of the 4x4.
|
|
*/
|
|
const PEL *p = (PEL *) IM_REGION_ADDR( in, xi - 1, yi - 1 );
|
|
|
|
/* Pel size and line size.
|
|
*/
|
|
const int bands = in->im->Bands;
|
|
const int lskip = IM_REGION_LSKIP( in );
|
|
|
|
#ifdef DEBUG
|
|
printf( "vips_interpolate_yafrsmooth_interpolate: %g %g\n", x, y );
|
|
printf( "\tleft=%d, top=%d, width=%d, height=%d\n",
|
|
xi - 1, yi - 1, 4, 4 );
|
|
#endif /*DEBUG*/
|
|
|
|
switch( in->im->BandFmt ) {
|
|
case IM_BANDFMT_UCHAR:
|
|
yafrsmooth_int_tab<unsigned char, int, 0, UCHAR_MAX>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxi, cyi, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_CHAR:
|
|
yafrsmooth_int_tab<signed char, int, SCHAR_MIN, SCHAR_MAX>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxi, cyi, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_USHORT:
|
|
yafrsmooth_int_tab<unsigned short, int, 0, USHRT_MAX>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxi, cyi, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_SHORT:
|
|
yafrsmooth_int_tab<signed short, int, SHRT_MIN, SHRT_MAX>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxi, cyi, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_UINT:
|
|
yafrsmooth_float_tab<unsigned int, float>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxf, cyf, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_INT:
|
|
yafrsmooth_float_tab<signed int, float>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxf, cyf, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_FLOAT:
|
|
yafrsmooth_float_tab<float, float>(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxf, cyf, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_DOUBLE:
|
|
yafrsmooth_notab(
|
|
out, p, bands, lskip,
|
|
yafrsmooth->sharpening,
|
|
x - xi, y - yi );
|
|
break;
|
|
|
|
case IM_BANDFMT_COMPLEX:
|
|
yafrsmooth_float_tab<float, float>(
|
|
out, p, bands * 2, lskip,
|
|
yafrsmooth->sharpening,
|
|
cxf, cyf, cs );
|
|
break;
|
|
|
|
case IM_BANDFMT_DPCOMPLEX:
|
|
yafrsmooth_notab(
|
|
out, p, bands * 2, lskip,
|
|
yafrsmooth->sharpening,
|
|
x - xi, y - yi );
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vips_interpolate_yafrsmooth_class_init( VipsInterpolateYafrsmoothClass *iclass )
|
|
{
|
|
GObjectClass *gobject_class = G_OBJECT_CLASS( iclass );
|
|
VipsObjectClass *object_class = VIPS_OBJECT_CLASS( iclass );
|
|
VipsInterpolateClass *interpolate_class =
|
|
VIPS_INTERPOLATE_CLASS( iclass );
|
|
|
|
GParamSpec *pspec;
|
|
|
|
object_class->nickname = "yafrsmooth";
|
|
object_class->description = _( "YAFR smooth interpolation" );
|
|
|
|
interpolate_class->interpolate =
|
|
vips_interpolate_yafrsmooth_interpolate;
|
|
interpolate_class->window_size = 4;
|
|
|
|
/* Build the tables of pre-computed coefficients.
|
|
*/
|
|
for( int x = 0; x < VIPS_TRANSFORM_SCALE + 1; x++ ) {
|
|
calculate_coefficients_catmull(
|
|
(float) x / VIPS_TRANSFORM_SCALE,
|
|
iclass->matrixf[x] );
|
|
|
|
for( int i = 0; i < 4; i++ )
|
|
iclass->matrixi[x][i] =
|
|
iclass->matrixf[x][i] * VIPS_INTERPOLATE_SCALE;
|
|
}
|
|
|
|
/* Create properties.
|
|
*/
|
|
pspec = g_param_spec_double( "sharpening",
|
|
_( "Sharpening" ),
|
|
_( "Degree of extra edge enhancement" ),
|
|
0, 4, 1,
|
|
(GParamFlags) G_PARAM_READWRITE );
|
|
g_object_class_install_property( gobject_class,
|
|
PROP_SHARPENING, pspec );
|
|
vips_object_class_install_argument( object_class, pspec,
|
|
VIPS_ARGUMENT_SET_ONCE,
|
|
G_STRUCT_OFFSET( VipsInterpolateYafrsmooth, sharpening ) );
|
|
}
|
|
|
|
static void
|
|
vips_interpolate_yafrsmooth_init( VipsInterpolateYafrsmooth *yafrsmooth )
|
|
{
|
|
#ifdef DEBUG
|
|
printf( "vips_interpolate_yafrsmooth_init: " );
|
|
vips_object_print( VIPS_OBJECT( yafrsmooth ) );
|
|
#endif /*DEBUG*/
|
|
|
|
yafrsmooth->sharpening = 1.0;
|
|
}
|