libvips/libvips/create/logmat.c
John Cupitt 1ae92bb15f make optional args into bullets
make docs easier to read
2016-05-02 10:12:37 +01:00

300 lines
7.7 KiB
C

/* laplacian of logmatian
*
* Written on: 30/11/1989
* Updated on: 6/12/1991
* 7/8/96 JC
* - ansified, mem leaks plugged
* 20/11/98 JC
* - mask too large check added
* 26/3/02 JC
* - ahem, was broken since '96, thanks matt
* 16/7/03 JC
* - makes mask out to zero, not out to minimum, thanks again matt
* 22/10/10
* - gtkdoc
* 20/10/13
* - redone as a class from logmat.c
* 16/12/14
* - default to int output to match vips_conv()
* - use @precision, not @integer
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define VIPS_DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <vips/vips.h>
#include "pcreate.h"
typedef struct _VipsLogmat {
VipsCreate parent_instance;
double sigma;
double min_ampl;
gboolean separable;
gboolean integer; /* Deprecated */
VipsPrecision precision;
} VipsLogmat;
typedef struct _VipsLogmatClass {
VipsCreateClass parent_class;
} VipsLogmatClass;
G_DEFINE_TYPE( VipsLogmat, vips_logmat, VIPS_TYPE_CREATE );
static int
vips_logmat_build( VipsObject *object )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( object );
VipsCreate *create = VIPS_CREATE( object );
VipsLogmat *logmat = (VipsLogmat *) object;
double sig2 = logmat->sigma * logmat->sigma;
double last;
int x, y;
int width, height;
double sum;
if( VIPS_OBJECT_CLASS( vips_logmat_parent_class )->build( object ) )
return( -1 );
/* The old, deprecated @integer property has been deliberately set to
* FALSE and they've not used the new @precision property ... switch
* to float to help them out.
*/
if( vips_object_argument_isset( object, "integer" ) &&
!vips_object_argument_isset( object, "precision" ) &&
!logmat->integer )
logmat->precision = VIPS_PRECISION_FLOAT;
if( vips_check_precision_intfloat( class->nickname,
logmat->precision ) )
return( -1 );
/* Find the size of the mask. We want to eval the mask out to the
* flat zero part, ie. beyond the minimum and to the point where it
* comes back up towards zero.
*/
last = 0.0;
for( x = 0; x < 5000; x++ ) {
const double distance = x * x;
double val;
/* Handbook of Pattern Recognition and image processing
* by Young and Fu AP 1986 pp 220-221
* temp = (1.0 / (2.0 * IM_PI * sig4)) *
(2.0 - (distance / sig2)) *
exp( (-1.0) * distance / (2.0 * sig2) )
.. use 0.5 to normalise
*/
val = 0.5 *
(2.0 - (distance / sig2)) *
exp( -distance / (2.0 * sig2) );
/* Stop when change in value (ie. difference from the last
* point) is positive (ie. we are going up) and absolute value
* is less than the min.
*/
if( val - last >= 0 &&
VIPS_FABS( val ) < logmat->min_ampl )
break;
last = val;
}
if( x == 5000 ) {
vips_error( class->nickname, "%s", _( "mask too large" ) );
return( -1 );
}
width = x * 2 + 1;
height = logmat->separable ? 1 : width;
vips_image_init_fields( create->out,
width, height, 1,
VIPS_FORMAT_DOUBLE, VIPS_CODING_NONE, VIPS_INTERPRETATION_B_W,
1.0, 1.0 );
vips_image_pipelinev( create->out,
VIPS_DEMAND_STYLE_ANY, NULL );
if( vips_image_write_prepare( create->out ) )
return( -1 );
sum = 0.0;
for( y = 0; y < height; y++ ) {
for( x = 0; x < width; x++ ) {
int xo = x - width / 2;
int yo = y - height / 2;
double distance = xo * xo + yo * yo;
double v = 0.5 *
(2.0 - (distance / sig2)) *
exp( -distance / (2.0 * sig2) );
if( logmat->precision == VIPS_PRECISION_INTEGER )
v = VIPS_RINT( 20 * v );
*VIPS_MATRIX( create->out, x, y ) = v;
sum += v;
}
}
vips_image_set_double( create->out, "scale", sum );
vips_image_set_double( create->out, "offset", 0.0 );
return( 0 );
}
static void
vips_logmat_class_init( VipsLogmatClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *vobject_class = VIPS_OBJECT_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
vobject_class->nickname = "logmat";
vobject_class->description = _( "make a laplacian of gaussian image" );
vobject_class->build = vips_logmat_build;
VIPS_ARG_DOUBLE( class, "sigma", 2,
_( "Radius" ),
_( "Radius of Logmatian" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLogmat, sigma ),
0.000001, 10000.0, 1.0 );
VIPS_ARG_DOUBLE( class, "min_ampl", 3,
_( "Width" ),
_( "Minimum amplitude of Logmatian" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLogmat, min_ampl ),
0.000001, 10000.0, 0.1 );
VIPS_ARG_BOOL( class, "separable", 4,
_( "Separable" ),
_( "Generate separable Logmatian" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
G_STRUCT_OFFSET( VipsLogmat, separable ),
FALSE );
VIPS_ARG_BOOL( class, "integer", 5,
_( "Integer" ),
_( "Generate integer Logmatian" ),
VIPS_ARGUMENT_OPTIONAL_INPUT | VIPS_ARGUMENT_DEPRECATED,
G_STRUCT_OFFSET( VipsLogmat, integer ),
FALSE );
VIPS_ARG_ENUM( class, "precision", 6,
_( "Precision" ),
_( "Generate with this precision" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
G_STRUCT_OFFSET( VipsLogmat, precision ),
VIPS_TYPE_PRECISION, VIPS_PRECISION_INTEGER );
}
static void
vips_logmat_init( VipsLogmat *logmat )
{
logmat->sigma = 1;
logmat->min_ampl = 0.1;
logmat->precision = VIPS_PRECISION_INTEGER;
}
/**
* vips_logmat:
* @out: output image
* @sigma: standard deviation of mask
* @min_ampl: minimum amplitude
* @...: %NULL-terminated list of optional named arguments
*
* Optional arguments:
*
* * @separable: generate a separable mask
* * @precision: #VipsPrecision for @out
*
* Creates a circularly symmetric Laplacian of Gaussian mask
* of radius
* @sigma. The size of the mask is determined by the variable @min_ampl;
* if for instance the value .1 is entered this means that the produced mask
* is clipped at values within 10 persent of zero, and where the change
* between mask elements is less than 10%.
*
* The program uses the following equation: (from Handbook of Pattern
* Recognition and image processing by Young and Fu, AP 1986 pages 220-221):
*
* H(r) = (1 / (2 * M_PI * s4)) *
* (2 - (r2 / s2)) *
* exp(-r2 / (2 * s2))
*
* where s2 = @sigma * @sigma, s4 = s2 * s2, r2 = r * r.
*
* The generated mask has odd size and its maximum value is normalised to
* 1.0, unless @precision is #VIPS_PRECISION_INTEGER.
*
* If @separable is set, only the centre horizontal is generated. This is
* useful for separable convolutions.
*
* If @precision is #VIPS_PRECISION_INTEGER, an integer mask is generated.
* This is useful for integer convolutions.
*
* "scale" is set to the sum of all the mask elements.
*
* See also: vips_gaussmat(), vips_conv().
*
* Returns: 0 on success, -1 on error
*/
int
vips_logmat( VipsImage **out, double sigma, double min_ampl, ... )
{
va_list ap;
int result;
va_start( ap, min_ampl );
result = vips_call_split( "logmat", ap, out, sigma, min_ampl );
va_end( ap );
return( result );
}