331 lines
7.7 KiB
C
331 lines
7.7 KiB
C
/* @(#) Does a inverse fft on an input image descriptor
|
|
* @(#) Input complex (2 floats) output real
|
|
* @(#)
|
|
* @(#) Usage:
|
|
* @(#) int im_invfftr(in, out)
|
|
* @(#) IMAGE *in, *out;
|
|
* @(#)
|
|
*
|
|
* Modified on :
|
|
* 27/2/03 JC
|
|
* - from im_invfft.c
|
|
* 22/1/04 JC
|
|
* - oops, fix for segv on wider than high fftw transforms
|
|
* 3/11/04
|
|
* - added fftw3 support
|
|
*/
|
|
|
|
/*
|
|
|
|
This file is part of VIPS.
|
|
|
|
VIPS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
|
|
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif /*HAVE_CONFIG_H*/
|
|
#include <vips/intl.h>
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#ifdef HAVE_FFTW
|
|
#include <rfftw.h>
|
|
#endif /*HAVE_FFTW*/
|
|
|
|
#ifdef HAVE_FFTW3
|
|
#include <fftw3.h>
|
|
#endif /*HAVE_FFTW3*/
|
|
|
|
#include <vips/vips.h>
|
|
#include <vips/internal.h>
|
|
|
|
#ifdef WITH_DMALLOC
|
|
#include <dmalloc.h>
|
|
#endif /*WITH_DMALLOC*/
|
|
|
|
#ifdef HAVE_FFTW
|
|
/* Use fftw2.
|
|
*/
|
|
static int
|
|
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
|
|
{
|
|
IMAGE *cmplx = im_open_local( dummy, "invfft1-1", "t" );
|
|
IMAGE *real = im_open_local( out, "invfft1-2", "t" );
|
|
const int half_width = in->Xsize / 2 + 1;
|
|
|
|
/* Transform to halfcomplex here.
|
|
*/
|
|
double *half_complex = IM_ARRAY( dummy,
|
|
in->Ysize * half_width * 2, double );
|
|
|
|
rfftwnd_plan plan;
|
|
int x, y;
|
|
double *q, *p;
|
|
|
|
if( !cmplx || !real || !half_complex || im_pincheck( in ) ||
|
|
im_poutcheck( out ) )
|
|
return( -1 );
|
|
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
|
|
im_error( "im_invfft", _( "one band uncoded only" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
/* Make dp complex image for input.
|
|
*/
|
|
if( im_clip2dcm( in, cmplx ) )
|
|
return( -1 );
|
|
|
|
/* Make mem buffer real image for output.
|
|
*/
|
|
if( im_cp_desc( real, in ) )
|
|
return( -1 );
|
|
real->Bbits = IM_BBITS_DOUBLE;
|
|
real->BandFmt = IM_BANDFMT_DOUBLE;
|
|
if( im_setupout( real ) )
|
|
return( -1 );
|
|
|
|
/* Build half-complex image.
|
|
*/
|
|
q = half_complex;
|
|
for( y = 0; y < cmplx->Ysize; y++ ) {
|
|
p = ((double *) cmplx->data) + y * in->Xsize * 2;
|
|
|
|
for( x = 0; x < half_width; x++ ) {
|
|
q[0] = p[0];
|
|
q[1] = p[1];
|
|
p += 2;
|
|
q += 2;
|
|
}
|
|
}
|
|
|
|
/* Make the plan for the transform. Yes, they really do use nx for
|
|
* height and ny for width.
|
|
*/
|
|
if( !(plan = rfftw2d_create_plan( in->Ysize, in->Xsize,
|
|
FFTW_BACKWARD, FFTW_MEASURE | FFTW_USE_WISDOM )) ) {
|
|
im_error( "im_invfft", _( "unable to create transform plan" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
rfftwnd_one_complex_to_real( plan,
|
|
(fftw_complex *) half_complex, (fftw_real *) real->data );
|
|
|
|
rfftwnd_destroy_plan( plan );
|
|
|
|
/* Copy to out.
|
|
*/
|
|
if( im_copy( real, out ) )
|
|
return( -1 );
|
|
|
|
return( 0 );
|
|
}
|
|
#else /*!HAVE_FFTW*/
|
|
#ifdef HAVE_FFTW3
|
|
/* Complex to real inverse transform.
|
|
*/
|
|
static int
|
|
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
|
|
{
|
|
IMAGE *cmplx = im_open_local( dummy, "invfft1-1", "t" );
|
|
IMAGE *real = im_open_local( out, "invfft1-2", "t" );
|
|
const int half_width = in->Xsize / 2 + 1;
|
|
|
|
/* Transform to halfcomplex here.
|
|
*/
|
|
double *half_complex = IM_ARRAY( dummy,
|
|
in->Ysize * half_width * 2, double );
|
|
|
|
/* We have to have a separate real buffer for the planner to work on.
|
|
*/
|
|
double *planner_scratch = IM_ARRAY( dummy,
|
|
in->Ysize * half_width * 2, double );
|
|
|
|
fftw_plan plan;
|
|
int x, y;
|
|
double *q, *p;
|
|
|
|
if( !cmplx || !real || !half_complex || im_pincheck( in ) ||
|
|
im_poutcheck( out ) )
|
|
return( -1 );
|
|
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
|
|
im_error( "im_invfft", _( "one band uncoded only" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
/* Make dp complex image for input.
|
|
*/
|
|
if( im_clip2dcm( in, cmplx ) )
|
|
return( -1 );
|
|
|
|
/* Make mem buffer real image for output.
|
|
*/
|
|
if( im_cp_desc( real, in ) )
|
|
return( -1 );
|
|
real->Bbits = IM_BBITS_DOUBLE;
|
|
real->BandFmt = IM_BANDFMT_DOUBLE;
|
|
if( im_setupout( real ) )
|
|
return( -1 );
|
|
|
|
/* Build half-complex image.
|
|
*/
|
|
q = half_complex;
|
|
for( y = 0; y < cmplx->Ysize; y++ ) {
|
|
p = ((double *) cmplx->data) + y * in->Xsize * 2;
|
|
|
|
for( x = 0; x < half_width; x++ ) {
|
|
q[0] = p[0];
|
|
q[1] = p[1];
|
|
p += 2;
|
|
q += 2;
|
|
}
|
|
}
|
|
|
|
/* Make the plan for the transform. Yes, they really do use nx for
|
|
* height and ny for width.
|
|
*/
|
|
if( !(plan = fftw_plan_dft_c2r_2d( in->Ysize, in->Xsize,
|
|
(fftw_complex *) planner_scratch, (double *) real->data,
|
|
0 )) ) {
|
|
im_error( "im_invfft", _( "unable to create transform plan" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
fftw_execute_dft_c2r( plan,
|
|
(fftw_complex *) half_complex, (double *) real->data );
|
|
|
|
fftw_destroy_plan( plan );
|
|
|
|
/* Copy to out.
|
|
*/
|
|
if( im_copy( real, out ) )
|
|
return( -1 );
|
|
|
|
return( 0 );
|
|
}
|
|
#else /*!HAVE_FFTW3*/
|
|
/* Fall back to vips's built-in fft.
|
|
*/
|
|
static int
|
|
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
|
|
{
|
|
int bpx = im_ispoweroftwo( in->Xsize );
|
|
int bpy = im_ispoweroftwo( in->Ysize );
|
|
float *buf, *q, *p1;
|
|
int x, y;
|
|
|
|
/* Buffers for real and imaginary parts.
|
|
*/
|
|
IMAGE *real = im_open_local( dummy, "invfft1:1", "t" );
|
|
IMAGE *imag = im_open_local( dummy, "invfft1:2", "t" );
|
|
|
|
/* Temps.
|
|
*/
|
|
IMAGE *t1 = im_open_local( dummy, "invfft1:3", "p" );
|
|
IMAGE *t2 = im_open_local( dummy, "invfft1:4", "p" );
|
|
|
|
if( !real || !imag || !t1 )
|
|
return( -1 );
|
|
if( im_pincheck( in ) || im_outcheck( out ) )
|
|
return( -1 );
|
|
if( in->Coding != IM_CODING_NONE ||
|
|
in->Bands != 1 || !im_iscomplex( in ) ) {
|
|
im_error( "im_invfft", _( "one band complex uncoded only" ) );
|
|
return( -1 );
|
|
}
|
|
if( !bpx || !bpy ) {
|
|
im_error( "im_invfft", _( "sides must be power of 2" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
/* Make sure we have a single-precision complex input image.
|
|
*/
|
|
if( im_clip2cm( in, t1 ) )
|
|
return( -1 );
|
|
|
|
/* Extract real and imag parts. We have to complement the imaginary.
|
|
*/
|
|
if( im_c2real( t1, real ) )
|
|
return( -1 );
|
|
if( im_c2imag( t1, t2 ) || im_lintra( -1.0, t2, 0.0, imag ) )
|
|
return( -1 );
|
|
|
|
/* Transform!
|
|
*/
|
|
if( im__fft_sp( (float *) real->data, (float *) imag->data,
|
|
bpx - 1, bpy - 1 ) ) {
|
|
im_error( "im_invfft", _( "fft_sp failed" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
/* WIO to out.
|
|
*/
|
|
if( im_cp_desc( out, in ) )
|
|
return( -1 );
|
|
out->Bbits = IM_BBITS_FLOAT;
|
|
out->BandFmt = IM_BANDFMT_FLOAT;
|
|
if( im_setupout( out ) )
|
|
return( -1 );
|
|
if( !(buf = (float *) IM_ARRAY( dummy,
|
|
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
|
|
return( -1 );
|
|
|
|
/* Just write real part.
|
|
*/
|
|
for( p1 = (float *) real->data, y = 0; y < out->Ysize; y++ ) {
|
|
q = buf;
|
|
|
|
for( x = 0; x < out->Xsize; x++ ) {
|
|
q[x] = *p1++;
|
|
}
|
|
|
|
if( im_writeline( y, out, (PEL *) buf ) )
|
|
return( -1 );
|
|
}
|
|
|
|
return( 0 );
|
|
}
|
|
#endif /*HAVE_FFTW3*/
|
|
#endif /*HAVE_FFTW*/
|
|
|
|
int
|
|
im_invfftr( IMAGE *in, IMAGE *out )
|
|
{
|
|
IMAGE *dummy = im_open( "im_invfft:1", "p" );
|
|
|
|
if( !dummy )
|
|
return( -1 );
|
|
if( im__fftproc( dummy, in, out, invfft1 ) ) {
|
|
im_close( dummy );
|
|
return( -1 );
|
|
}
|
|
im_close( dummy );
|
|
|
|
if( out->Bands == 1 )
|
|
out->Type = IM_TYPE_B_W;
|
|
else
|
|
out->Type = IM_TYPE_MULTIBAND;
|
|
|
|
return( 0 );
|
|
}
|