libvips/libvips/convolution/im_aconv.c

664 lines
15 KiB
C

/* im_aconv ... approximate convolution
*
* This operation does an approximate, seperable convolution.
*
* Author: John Cupitt & Nicolas Robidoux
* Written on: 31/5/11
* Modified on:
* 31/5/11
* - from im_conv()
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/* Show sample pixels as they are transformed.
#define DEBUG_PIXELS
*/
/*
*/
#define DEBUG
#define VIPS_DEBUG
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/vector.h>
#include <vips/debug.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* Maximum number of lines we can break the mask into.
*/
#define MAX_LINES (1000)
/* Euclid's algorithm. Use this to common up mults.
*/
static int
gcd( int a, int b )
{
if( b == 0 )
return( abs( a ) );
else
return( gcd( b, a % b ) );
}
/* A set of lines.
*/
typedef struct _Lines {
/* Copy of our arguments.
*/
IMAGE *in;
IMAGE *out;
DOUBLEMASK *mask;
int n_layers;
int area;
int rounding;
/* Start is the left-most pixel in the line, end is one beyond the
* right-most pixel.
*/
int n_lines;
int start[MAX_LINES];
int end[MAX_LINES];
int factor[MAX_LINES];
} Lines;
static void
line_start( Lines *lines, int x, int factor )
{
lines->start[lines->n_lines] = x;
lines->factor[lines->n_lines] = factor;
}
static int
line_end( Lines *lines, int x )
{
lines->end[lines->n_lines] = x;
lines->n_lines += 1;
if( lines->n_lines >= MAX_LINES ) {
vips_error( "im_aconv", "%s", _( "mask too complex" ) );
return( -1 );
}
return( 0 );
}
/* Break a mask into lines.
*/
static Lines *
lines_new( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
{
const int width = mask->xsize * mask->ysize;
Lines *lines;
double max;
double min;
double depth;
int layers_above;
int layers_below;
int z, n, x;
/* Check parameters.
*/
if( im_piocheck( in, out ) ||
im_check_uncoded( "im_aconv", in ) ||
vips_check_dmask_1d( "im_aconv", mask ) )
return( NULL );
if( !(lines = VIPS_NEW( out, Lines )) )
return( NULL );
lines->in = in;
lines->out = out;
if( !(lines->mask = (DOUBLEMASK *) im_local( out,
(im_construct_fn) im_dup_dmask,
(im_callback_fn) im_free_dmask, mask, mask->filename, NULL )) )
return( NULL );
lines->n_layers = n_layers;
lines->n_lines = 0;
VIPS_DEBUG_MSG( "lines_new: breaking into %d layers ...\n", n_layers );
/* Find mask range. We must always include the zero axis in the mask.
*/
max = 0;
min = 0;
for( x = 0; x < width; x++ ) {
if( mask->coeff[x] > max )
max = mask->coeff[x];
if( mask->coeff[x] < min )
min = mask->coeff[x];
}
/* The zero axis must fall on a layer boundary. Estimate the
* depth, find n-lines-above-zero, get exact depth, then calculate a
* fixed n-lines which includes any negative parts.
*/
depth = (max - min) / n_layers;
layers_above = ceil( max / depth );
depth = max / layers_above;
layers_below = floor( min / depth );
n_layers = layers_above - layers_below;
VIPS_DEBUG_MSG( "depth = %g, n_layers = %d\n", depth, n_layers );
/* For each layer, generate a set of lines which are inside the
* perimeter. Work down from the top.
*/
for( z = 0; z < n_layers; z++ ) {
double y = max - (1 + z) * depth;
/* Odd, but we must avoid rounding errors that make us miss 0
* in the line above.
*/
int y_positive = z < layers_above;
int inside;
/* Start outside the perimeter.
*/
inside = 0;
for( x = 0; x < width; x++ ) {
/* The vertical line from mask[z] to 0 is inside. Is
* our current square (x, y) part of that line?
*/
if( (y_positive && mask->coeff[x] > y + depth / 2) ||
(!y_positive && mask->coeff[x] < y + depth / 2) ) {
/* (x, y) is inside.
*/
if( !inside ) {
line_start( lines,
x, y_positive ? 1 : -1 );
inside = 1;
}
}
else {
/* (x, y) is outside.
*/
if( inside ) {
if( line_end( lines, x ) )
return( NULL );
inside = 0;
}
}
}
if( inside &&
line_end( lines, mask->xsize - 1 ) )
return( NULL );
}
/* Can we common up any lines? Search for lines with identical
* start/end.
*/
for( z = 0; z < lines->n_lines; z++ ) {
for( n = z + 1; n < lines->n_lines; n++ ) {
if( lines->start[z] == lines->start[n] &&
lines->end[z] == lines->end[n] ) {
lines->factor[z] += lines->factor[n];
/* n can be deleted. Do this in a separate
* pass below.
*/
lines->factor[n] = 0;
}
}
}
/* Now we can remove all factor 0 lines.
*/
for( z = 0; z < lines->n_lines; z++ ) {
if( lines->factor[z] == 0 ) {
for( x = z; x < lines->n_lines; x++ ) {
lines->start[x] = lines->start[x + 1];
lines->end[x] = lines->end[x + 1];
lines->factor[x] = lines->factor[x + 1];
}
lines->n_lines -= 1;
}
}
/* Find the area of the lines.
*/
lines->area = 0;
for( z = 0; z < lines->n_lines; z++ )
lines->area += lines->factor[z] *
(lines->end[z] - lines->start[z]);
/* Strength reduction: if all lines are divisible by n, we can move
* that n out into the ->area factor. The aim is to produce as many
* factor 1 lines as we can and to reduce the chance of overflow.
*/
x = lines->factor[0];
for( z = 1; z < lines->n_lines; z++ )
x = gcd( x, lines->factor[z] );
for( z = 0; z < lines->n_lines; z++ )
lines->factor[z] /= x;
lines->area *= x;
lines->rounding = (lines->area + 1) / 2;
/* ASCII-art layer drawing.
*/
printf( "lines:\n" );
for( z = 0; z < lines->n_lines; z++ ) {
printf( "%3d - %2d x ", z, lines->factor[z] );
for( x = 0; x < 55; x++ ) {
int rx = x * width / 55;
if( rx >= lines->start[z] && rx < lines->end[z] )
printf( "#" );
else
printf( " " );
}
printf( " %3d .. %3d\n", lines->start[z], lines->end[z] );
}
printf( "area = %d\n", lines->area );
printf( "rounding = %d\n", lines->rounding );
return( lines );
}
/* Our sequence value.
*/
typedef struct {
Lines *lines;
REGION *ir; /* Input region */
int *start; /* Offsets for start and stop */
int *end;
int *sum; /* The sum for each line */
int last_stride; /* Avoid recalcing offsets, if we can */
} LinesSequence;
/* Free a sequence value.
*/
static int
lines_stop( void *vseq, void *a, void *b )
{
LinesSequence *seq = (LinesSequence *) vseq;
IM_FREEF( im_region_free, seq->ir );
return( 0 );
}
/* Convolution start function.
*/
static void *
lines_start( IMAGE *out, void *a, void *b )
{
IMAGE *in = (IMAGE *) a;
Lines *lines = (Lines *) b;
LinesSequence *seq;
if( !(seq = IM_NEW( out, LinesSequence )) )
return( NULL );
/* Init!
*/
seq->lines = lines;
seq->ir = im_region_create( in );
seq->start = IM_ARRAY( out, lines->n_lines, int );
seq->end = IM_ARRAY( out, lines->n_lines, int );
seq->sum = IM_ARRAY( out, lines->n_lines, int );
seq->last_stride = -1;
if( !seq->ir || !seq->start || !seq->end || !seq->sum ) {
lines_stop( seq, in, lines );
return( NULL );
}
return( seq );
}
#define CLIP_UCHAR( V ) \
G_STMT_START { \
if( (V) < 0 ) { \
(V) = 0; \
} \
else if( (V) > UCHAR_MAX ) { \
(V) = UCHAR_MAX; \
} \
} G_STMT_END
/* The h and v loops are very similar, but also annoyingly different. Keep
* them separate for easy debugging.
*/
/* Do horizontal masks ... we scan the mask along scanlines.
*/
static int
lines_generate_horizontal( REGION *or, void *vseq, void *a, void *b )
{
LinesSequence *seq = (LinesSequence *) vseq;
IMAGE *in = (IMAGE *) a;
Lines *lines = (Lines *) b;
REGION *ir = seq->ir;
const int n_lines = lines->n_lines;
DOUBLEMASK *mask = lines->mask;
Rect *r = &or->valid;
Rect s;
int x, y, z, i;
int istride;
int ostride;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += mask->xsize - 1;
s.height += mask->ysize - 1;
if( im_prepare( ir, &s ) )
return( -1 );
/* Stride can be different for the vertical case, keep this here for
* ease of direction change.
*/
istride = IM_IMAGE_SIZEOF_PEL( in );
ostride = IM_IMAGE_SIZEOF_PEL( lines->out );
/* Init offset array.
*/
if( seq->last_stride != istride ) {
seq->last_stride = istride;
for( z = 0; z < n_lines; z++ ) {
seq->start[z] = lines->start[z] * istride;
seq->end[z] = lines->end[z] * istride;
}
}
for( y = 0; y < r->height; y++ ) {
switch( in->BandFmt ) {
case IM_BANDFMT_UCHAR:
{
for( i = 0; i < in->Bands; i++ ) {
PEL *q;
PEL *p;
int sum;
p = i + (PEL *) IM_REGION_ADDR( ir, r->left, r->top + y );
q = i + (PEL *) IM_REGION_ADDR( or, r->left, r->top + y );
/* Fill the lines ready to scan.
*/
sum = 0;
for( z = 0; z < lines->n_lines; z++ ) {
seq->sum[z] = 0;
for( x = lines->start[z]; x < lines->end[z]; x++ )
seq->sum[z] += p[x * istride];
sum += lines->factor[z] * seq->sum[z];
}
p += istride;
sum = (sum + lines->rounding) / lines->area;
CLIP_UCHAR( sum );
*q = sum;
q += ostride;
for( x = 1; x < r->width; x++ ) {
sum = 0;
for( z = 0; z < lines->n_lines; z++ ) {
seq->sum[z] += p[seq->end[z]];
seq->sum[z] -= p[seq->start[z]];
sum += lines->factor[z] * seq->sum[z];
}
p += istride;
sum = (sum + lines->rounding) / lines->area;
CLIP_UCHAR( sum );
*q = sum;
q += ostride;
}
}
}
break;
default:
g_assert( 0 );
}
}
return( 0 );
}
/* Do vertical masks ... we scan the mask down columns of pixels. Copy-paste
* from above with small changes.
*/
static int
lines_generate_vertical( REGION *or, void *vseq, void *a, void *b )
{
LinesSequence *seq = (LinesSequence *) vseq;
IMAGE *in = (IMAGE *) a;
Lines *lines = (Lines *) b;
REGION *ir = seq->ir;
const int n_lines = lines->n_lines;
DOUBLEMASK *mask = lines->mask;
Rect *r = &or->valid;
Rect s;
int x, y, z;
int istride;
int ostride;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += mask->xsize - 1;
s.height += mask->ysize - 1;
if( im_prepare( ir, &s ) )
return( -1 );
/* Stride can be different for the vertical case, keep this here for
* ease of direction change.
*/
istride = IM_REGION_LSKIP( ir );
ostride = IM_REGION_LSKIP( or );
/* Init offset array.
*/
if( seq->last_stride != istride ) {
seq->last_stride = istride;
for( z = 0; z < n_lines; z++ ) {
seq->start[z] = lines->start[z] * istride;
seq->end[z] = lines->end[z] * istride;
}
}
switch( in->BandFmt ) {
case IM_BANDFMT_UCHAR:
{
for( x = 0; x < IM_REGION_N_ELEMENTS( or ); x++ ) {
PEL *q;
PEL *p;
int sum;
p = x + (PEL *) IM_REGION_ADDR( ir, r->left, r->top );
q = x + (PEL *) IM_REGION_ADDR( or, r->left, r->top );
/* Fill the lines ready to scan.
*/
sum = 0;
for( z = 0; z < lines->n_lines; z++ ) {
seq->sum[z] = 0;
for( y = lines->start[z]; y < lines->end[z]; y++ )
seq->sum[z] += p[y * istride];
sum += lines->factor[z] * seq->sum[z];
}
p += istride;
sum = (sum + lines->rounding) / lines->area;
CLIP_UCHAR( sum );
*q = sum;
q += ostride;
for( y = 1; y < r->height; y++ ) {
sum = 0;
for( z = 0; z < lines->n_lines; z++ ) {
seq->sum[z] += p[seq->end[z]];
seq->sum[z] -= p[seq->start[z]];
sum += lines->factor[z] * seq->sum[z];
}
p += istride;
sum = (sum + lines->rounding) / lines->area;
CLIP_UCHAR( sum );
*q = sum;
q += ostride;
}
}
}
break;
default:
g_assert( 0 );
}
return( 0 );
}
static int
aconv_raw( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
{
Lines *lines;
im_generate_fn generate;
#ifdef DEBUG
printf( "aconv_raw: starting with matrix:\n" );
im_print_dmask( mask );
#endif /*DEBUG*/
if( !(lines = lines_new( in, out, mask, n_layers )) )
return( -1 );
/* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output
* would be 1x1.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Xsize -= mask->xsize - 1;
out->Ysize -= mask->ysize - 1;
if( out->Xsize <= 0 || out->Ysize <= 0 ) {
im_error( "im_aconv", "%s", _( "image too small for mask" ) );
return( -1 );
}
if( mask->xsize == 1 )
generate = lines_generate_vertical;
else
generate = lines_generate_horizontal;
/* Set demand hints. FATSTRIP is good for us, as THINSTRIP will cause
* too many recalculations on overlaps.
*/
if( im_demand_hint( out, IM_FATSTRIP, in, NULL ) ||
im_generate( out,
lines_start, generate, lines_stop, in, lines ) )
return( -1 );
out->Xoffset = -mask->xsize / 2;
out->Yoffset = -mask->ysize / 2;
return( 0 );
}
/**
* im_aconv:
* @in: input image
* @out: output image
* @mask: convolution mask
* @n_layers: number of layers for approximation
*
* Perform a separable convolution of @in with @mask using approximate
* convolution.
*
* The mask must be 1xn or nx1 elements.
* The output image
* always has the same #VipsBandFmt as the input image.
*
* The image is convolved twice: once with @mask and then again with @mask
* rotated by 90 degrees.
*
* Larger values for @n_layers give more accurate
* results, but are slower. As @n_layers approaches the mask radius, the
* accuracy will become close to exact convolution and the speed will drop to
* match. For many large masks, such as Gaussian, @n_layers can be only 10% of
* this value and accuracy will still be good.
*
* See also: im_convsep_f(), im_create_dmaskv().
*
* Returns: 0 on success, -1 on error
*/
int
im_aconv( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
{
IMAGE *t[2];
const int n_mask = mask->xsize * mask->ysize;
DOUBLEMASK *rmask;
if( im_open_local_array( out, t, 2, "im_aconv", "p" ) ||
!(rmask = (DOUBLEMASK *) im_local( out,
(im_construct_fn) im_dup_dmask,
(im_callback_fn) im_free_dmask, mask, mask->filename, NULL )) )
return( -1 );
rmask->xsize = mask->ysize;
rmask->ysize = mask->xsize;
if( im_embed( in, t[0], 1, n_mask / 2, n_mask / 2,
in->Xsize + n_mask - 1, in->Ysize + n_mask - 1 ) ||
aconv_raw( t[0], t[1], mask, n_layers ) ||
aconv_raw( t[1], out, rmask, n_layers ) )
return( -1 );
out->Xoffset = 0;
out->Yoffset = 0;
return( 0 );
}