libvips/libvips/foreign/libnsgif/lzw.c

378 lines
10 KiB
C

/*
* This file is part of NetSurf's LibNSGIF, http://www.netsurf-browser.org/
* Licensed under the MIT License,
* http://www.opensource.org/licenses/mit-license.php
*
* Copyright 2017 Michael Drake <michael.drake@codethink.co.uk>
*/
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include "lzw.h"
/**
* \file
* \brief LZW decompression (implementation)
*
* Decoder for GIF LZW data.
*/
/**
* Context for reading LZW data.
*
* LZW data is split over multiple sub-blocks. Each sub-block has a
* byte at the start, which says the sub-block size, and then the data.
* Zero-size sub-blocks have no data, and the biggest sub-block size is
* 255, which means there are 255 bytes of data following the sub-block
* size entry.
*
* Note that an individual LZW code can be split over up to three sub-blocks.
*/
struct lzw_read_ctx {
const uint8_t *data; /**< Pointer to start of input data */
uint32_t data_len; /**< Input data length */
uint32_t data_sb_next; /**< Offset to sub-block size */
const uint8_t *sb_data; /**< Pointer to current sub-block in data */
uint32_t sb_bit; /**< Current bit offset in sub-block */
uint32_t sb_bit_count; /**< Bit count in sub-block */
};
/**
* LZW dictionary entry.
*
* Records in the dictionary are composed of 1 or more entries.
* Entries point to previous entries which can be followed to compose
* the complete record. To compose the record in reverse order, take
* the `last_value` from each entry, and move to the previous entry.
* If the previous_entry's index is < the current clear_code, then it
* is the last entry in the record.
*/
struct lzw_dictionary_entry {
uint8_t last_value; /**< Last value for record ending at entry. */
uint8_t first_value; /**< First value for entry's record. */
uint16_t previous_entry; /**< Offset in dictionary to previous entry. */
};
/**
* LZW decompression context.
*/
struct lzw_ctx {
/** Input reading context */
struct lzw_read_ctx input;
uint32_t previous_code; /**< Code read from input previously. */
uint32_t previous_code_first; /**< First value of previous code. */
uint32_t initial_code_size; /**< Starting LZW code size. */
uint32_t current_code_size; /**< Current LZW code size. */
uint32_t current_code_size_max; /**< Max code value for current size. */
uint32_t clear_code; /**< Special Clear code value */
uint32_t eoi_code; /**< Special End of Information code value */
uint32_t current_entry; /**< Next position in table to fill. */
/** Output value stack. */
uint8_t stack_base[1 << LZW_CODE_MAX];
/** LZW decode dictionary. Generated during decode. */
struct lzw_dictionary_entry table[1 << LZW_CODE_MAX];
};
/* Exported function, documented in lzw.h */
lzw_result lzw_context_create(struct lzw_ctx **ctx)
{
struct lzw_ctx *c = malloc(sizeof(*c));
if (c == NULL) {
return LZW_NO_MEM;
}
*ctx = c;
return LZW_OK;
}
/* Exported function, documented in lzw.h */
void lzw_context_destroy(struct lzw_ctx *ctx)
{
free(ctx);
}
/**
* Advance the context to the next sub-block in the input data.
*
* \param[in] ctx LZW reading context, updated on success.
* \return LZW_OK or LZW_OK_EOD on success, appropriate error otherwise.
*/
static lzw_result lzw__block_advance(struct lzw_read_ctx *ctx)
{
uint32_t block_size;
uint32_t next_block_pos = ctx->data_sb_next;
const uint8_t *data_next = ctx->data + next_block_pos;
if (next_block_pos >= ctx->data_len) {
return LZW_NO_DATA;
}
block_size = *data_next;
if ((next_block_pos + block_size) >= ctx->data_len) {
return LZW_NO_DATA;
}
ctx->sb_bit = 0;
ctx->sb_bit_count = block_size * 8;
if (block_size == 0) {
ctx->data_sb_next += 1;
return LZW_OK_EOD;
}
ctx->sb_data = data_next + 1;
ctx->data_sb_next += block_size + 1;
return LZW_OK;
}
/**
* Get the next LZW code of given size from the raw input data.
*
* Reads codes from the input data stream coping with GIF data sub-blocks.
*
* \param[in] ctx LZW reading context, updated.
* \param[in] code_size Size of LZW code to get from data.
* \param[out] code_out Returns an LZW code on success.
* \return LZW_OK or LZW_OK_EOD on success, appropriate error otherwise.
*/
static inline lzw_result lzw__next_code(
struct lzw_read_ctx *ctx,
uint8_t code_size,
uint32_t *code_out)
{
uint32_t code = 0;
uint8_t current_bit = ctx->sb_bit & 0x7;
uint8_t byte_advance = (current_bit + code_size) >> 3;
assert(byte_advance <= 2);
if (ctx->sb_bit + code_size <= ctx->sb_bit_count) {
/* Fast path: code fully inside this sub-block */
const uint8_t *data = ctx->sb_data + (ctx->sb_bit >> 3);
switch (byte_advance) {
case 2: code |= data[2] << 16; /* Fall through */
case 1: code |= data[1] << 8; /* Fall through */
case 0: code |= data[0] << 0;
}
ctx->sb_bit += code_size;
} else {
/* Slow path: code spans sub-blocks */
uint8_t byte = 0;
uint8_t bits_remaining_0 = (code_size < (8 - current_bit)) ?
code_size : (8 - current_bit);
uint8_t bits_remaining_1 = code_size - bits_remaining_0;
uint8_t bits_used[3] = {
[0] = bits_remaining_0,
[1] = bits_remaining_1 < 8 ? bits_remaining_1 : 8,
[2] = bits_remaining_1 - 8,
};
while (true) {
const uint8_t *data = ctx->sb_data;
lzw_result res;
/* Get any data from end of this sub-block */
while (byte <= byte_advance &&
ctx->sb_bit < ctx->sb_bit_count) {
code |= data[ctx->sb_bit >> 3] << (byte << 3);
ctx->sb_bit += bits_used[byte];
byte++;
}
/* Check if we have all we need */
if (byte > byte_advance) {
break;
}
/* Move to next sub-block */
res = lzw__block_advance(ctx);
if (res != LZW_OK) {
return res;
}
}
}
*code_out = (code >> current_bit) & ((1 << code_size) - 1);
return LZW_OK;
}
/**
* Clear LZW code dictionary.
*
* \param[in] ctx LZW reading context, updated.
* \param[out] stack_pos_out Returns current stack position.
* \return LZW_OK or error code.
*/
static lzw_result lzw__clear_codes(
struct lzw_ctx *ctx,
const uint8_t ** const stack_pos_out)
{
uint32_t code;
uint8_t *stack_pos;
/* Reset dictionary building context */
ctx->current_code_size = ctx->initial_code_size + 1;
ctx->current_code_size_max = (1 << ctx->current_code_size) - 1;;
ctx->current_entry = (1 << ctx->initial_code_size) + 2;
/* There might be a sequence of clear codes, so process them all */
do {
lzw_result res = lzw__next_code(&ctx->input,
ctx->current_code_size, &code);
if (res != LZW_OK) {
return res;
}
} while (code == ctx->clear_code);
/* The initial code must be from the initial dictionary. */
if (code > ctx->clear_code) {
return LZW_BAD_ICODE;
}
/* Record this initial code as "previous" code, needed during decode. */
ctx->previous_code = code;
ctx->previous_code_first = code;
/* Reset the stack, and add first non-clear code added as first item. */
stack_pos = ctx->stack_base;
*stack_pos++ = code;
*stack_pos_out = stack_pos;
return LZW_OK;
}
/* Exported function, documented in lzw.h */
lzw_result lzw_decode_init(
struct lzw_ctx *ctx,
const uint8_t *compressed_data,
uint32_t compressed_data_len,
uint32_t compressed_data_pos,
uint8_t code_size,
const uint8_t ** const stack_base_out,
const uint8_t ** const stack_pos_out)
{
struct lzw_dictionary_entry *table = ctx->table;
/* Initialise the input reading context */
ctx->input.data = compressed_data;
ctx->input.data_len = compressed_data_len;
ctx->input.data_sb_next = compressed_data_pos;
ctx->input.sb_bit = 0;
ctx->input.sb_bit_count = 0;
/* Initialise the dictionary building context */
ctx->initial_code_size = code_size;
ctx->clear_code = (1 << code_size) + 0;
ctx->eoi_code = (1 << code_size) + 1;
/* Initialise the standard dictionary entries */
for (uint32_t i = 0; i < ctx->clear_code; ++i) {
table[i].first_value = i;
table[i].last_value = i;
}
*stack_base_out = ctx->stack_base;
return lzw__clear_codes(ctx, stack_pos_out);
}
/* Exported function, documented in lzw.h */
lzw_result lzw_decode(struct lzw_ctx *ctx,
const uint8_t ** const stack_pos_out)
{
lzw_result res;
uint32_t code_new;
uint32_t code_out;
uint8_t last_value;
uint8_t *stack_pos = ctx->stack_base;
uint32_t clear_code = ctx->clear_code;
uint32_t current_entry = ctx->current_entry;
struct lzw_dictionary_entry * const table = ctx->table;
/* Get a new code from the input */
res = lzw__next_code(&ctx->input, ctx->current_code_size, &code_new);
if (res != LZW_OK) {
return res;
}
/* Handle the new code */
if (code_new == clear_code) {
/* Got Clear code */
return lzw__clear_codes(ctx, stack_pos_out);
} else if (code_new == ctx->eoi_code) {
/* Got End of Information code */
return LZW_EOI_CODE;
} else if (code_new > current_entry) {
/* Code is invalid */
return LZW_BAD_CODE;
} else if (code_new < current_entry) {
/* Code is in table */
code_out = code_new;
last_value = table[code_new].first_value;
} else {
/* Code not in table */
*stack_pos++ = ctx->previous_code_first;
code_out = ctx->previous_code;
last_value = ctx->previous_code_first;
}
/* Add to the dictionary, only if there's space */
if (current_entry < (1 << LZW_CODE_MAX)) {
struct lzw_dictionary_entry *entry = table + current_entry;
entry->last_value = last_value;
entry->first_value = ctx->previous_code_first;
entry->previous_entry = ctx->previous_code;
ctx->current_entry++;
}
/* Ensure code size is increased, if needed. */
if (current_entry == ctx->current_code_size_max) {
if (ctx->current_code_size < LZW_CODE_MAX) {
ctx->current_code_size++;
ctx->current_code_size_max =
(1 << ctx->current_code_size) - 1;
}
}
/* Store details of this code as "previous code" to the context. */
ctx->previous_code_first = table[code_new].first_value;
ctx->previous_code = code_new;
/* Put rest of data for this code on output stack.
* Note, in the case of "code not in table", the last entry of the
* current code has already been placed on the stack above. */
while (code_out > clear_code) {
struct lzw_dictionary_entry *entry = table + code_out;
*stack_pos++ = entry->last_value;
code_out = entry->previous_entry;
}
*stack_pos++ = table[code_out].last_value;
*stack_pos_out = stack_pos;
return LZW_OK;
}