311 lines
9.9 KiB
Python
Executable File
311 lines
9.9 KiB
Python
Executable File
#!/usr/bin/python
|
|
|
|
import unittest
|
|
import gc
|
|
|
|
#import logging
|
|
#logging.basicConfig(level = logging.DEBUG)
|
|
|
|
from gi.repository import Vips
|
|
from vips8 import vips
|
|
|
|
unsigned_formats = [Vips.BandFormat.UCHAR,
|
|
Vips.BandFormat.USHORT,
|
|
Vips.BandFormat.UINT]
|
|
signed_formats = [Vips.BandFormat.CHAR,
|
|
Vips.BandFormat.SHORT,
|
|
Vips.BandFormat.INT]
|
|
float_formats = [Vips.BandFormat.FLOAT,
|
|
Vips.BandFormat.DOUBLE]
|
|
complex_formats = [Vips.BandFormat.COMPLEX,
|
|
Vips.BandFormat.DPCOMPLEX]
|
|
int_formats = unsigned_formats + signed_formats
|
|
noncomplex_formats = int_formats + float_formats
|
|
all_formats = int_formats + float_formats + complex_formats
|
|
|
|
# an expanding zip ... if either of the args is not a list, duplicate it down
|
|
# the other
|
|
def zip_expand(x, y):
|
|
if isinstance(x, list) and isinstance(y, list):
|
|
return zip(x, y)
|
|
elif isinstance(x, list):
|
|
return [[i, y] for i in x]
|
|
elif isinstance(y, list):
|
|
return [[x, j] for j in y]
|
|
else:
|
|
return [[x, y]]
|
|
|
|
# run a 1-ary function on a thing -- loop over elements if the
|
|
# thing is a list
|
|
def run_fn(fn, x):
|
|
if isinstance(x, list):
|
|
return [fn(i) for i in x]
|
|
else:
|
|
return fn(x)
|
|
|
|
# run a 2-ary function on two things -- loop over elements pairwise if the
|
|
# things are lists
|
|
def run_fn2(fn, x, y):
|
|
if isinstance(x, Vips.Image) or isinstance(y, Vips.Image):
|
|
return fn(x, y)
|
|
elif isinstance(x, list) or isinstance(y, list):
|
|
return [fn(i, j) for i, j in zip_expand(x, y)]
|
|
else:
|
|
return fn(x, y)
|
|
|
|
class TestArithmetic(unittest.TestCase):
|
|
# test a pair of things which can be lists for approx. equality
|
|
def assertAlmostEqualObjects(self, a, b, msg = ''):
|
|
for x, y in zip_expand(a, b):
|
|
#print 'assertAlmostEqual %s = %s' % (x, y)
|
|
self.assertAlmostEqual(x, y, places = 4, msg = msg)
|
|
|
|
# run a function on an image and on a single pixel, the results
|
|
# should match
|
|
def run_cmp(self, message, im, x, y, fn):
|
|
a = im.getpoint(x, y)
|
|
v1 = fn(a)
|
|
im2 = fn(im)
|
|
v2 = im2.getpoint(x, y)
|
|
self.assertAlmostEqualObjects(v1, v2, msg = message)
|
|
|
|
# run a function on (image, constant), and on (constant, image).
|
|
# 50,50 and 10,10 should have different values on the test image
|
|
def run_testconst(self, message, fn, im, c):
|
|
self.run_cmp(message, im, 50, 50, lambda x: run_fn2(fn, x, c))
|
|
self.run_cmp(message, im, 50, 50, lambda x: run_fn2(fn, c, x))
|
|
self.run_cmp(message, im, 10, 10, lambda x: run_fn2(fn, x, c))
|
|
self.run_cmp(message, im, 10, 10, lambda x: run_fn2(fn, c, x))
|
|
|
|
def run_arith_const(self, fn, fmt = all_formats):
|
|
[self.run_testconst(fn.func_name + ' scalar', fn, x.cast(y), 2)
|
|
for x in self.all_images for y in fmt]
|
|
[self.run_testconst(fn.func_name + ' vector', fn, self.colour.cast(y),
|
|
[1, 2, 3])
|
|
for y in fmt]
|
|
|
|
# run a function on a pair of images and on a pair of pixels, the results
|
|
# should match
|
|
def run_cmp2(self, message, left, right, x, y, fn):
|
|
a = left.getpoint(x, y)
|
|
b = right.getpoint(x, y)
|
|
v1 = fn(a, b)
|
|
after = fn(left, right)
|
|
v2 = after.getpoint(x, y)
|
|
self.assertAlmostEqualObjects(v1, v2, msg = message)
|
|
|
|
# run a function on a pair of images
|
|
# 50,50 and 10,10 should have different values on the test image
|
|
def run_test2(self, message, left, right, fn):
|
|
self.run_cmp2(message, left, right, 50, 50,
|
|
lambda x, y: run_fn2(fn, x, y))
|
|
self.run_cmp2(message, left, right, 10, 10,
|
|
lambda x, y: run_fn2(fn, x, y))
|
|
|
|
def run_arith(self, fn, fmt = all_formats):
|
|
[self.run_test2(fn.func_name + ' image', x.cast(y), x.cast(z), fn)
|
|
for x in self.all_images for y in fmt for z in fmt]
|
|
|
|
def setUp(self):
|
|
im = Vips.Image.mask_ideal(100, 100, 0.5)
|
|
self.colour = im * [1, 2, 3] + [2, 3, 4]
|
|
self.mono = self.colour.extract_band(1)
|
|
self.all_images = [self.mono, self.colour]
|
|
|
|
# test all operator overloads we define
|
|
|
|
def test_add(self):
|
|
def add(x, y):
|
|
return x + y
|
|
|
|
self.run_arith_const(add)
|
|
self.run_arith(add)
|
|
|
|
def test_sub(self):
|
|
def sub(x, y):
|
|
return x - y
|
|
|
|
self.run_arith_const(sub)
|
|
self.run_arith(sub)
|
|
|
|
def test_mul(self):
|
|
def mul(x, y):
|
|
return x * y
|
|
|
|
self.run_arith_const(mul)
|
|
self.run_arith(mul)
|
|
|
|
def test_div(self):
|
|
def div(x, y):
|
|
return x / y
|
|
|
|
# (const / image) needs (image ** -1), which won't work for complex
|
|
self.run_arith_const(div, fmt = noncomplex_formats)
|
|
self.run_arith(div)
|
|
|
|
def test_floordiv(self):
|
|
def my_floordiv(x, y):
|
|
return x // y
|
|
|
|
# (const // image) needs (image ** -1), which won't work for complex
|
|
self.run_arith_const(my_floordiv, fmt = noncomplex_formats)
|
|
self.run_arith(my_floordiv, fmt = noncomplex_formats)
|
|
|
|
def test_pow(self):
|
|
def my_pow(x, y):
|
|
return x ** y
|
|
|
|
# (image ** x) won't work for complex images ... just test non-complex
|
|
self.run_arith_const(my_pow, fmt = noncomplex_formats)
|
|
self.run_arith(my_pow, fmt = noncomplex_formats)
|
|
|
|
def test_and(self):
|
|
def my_and(x, y):
|
|
# python doesn't allow bools on float
|
|
if isinstance(x, float):
|
|
x = int(x)
|
|
if isinstance(y, float):
|
|
y = int(y)
|
|
return x & y
|
|
|
|
self.run_arith_const(my_and, fmt = noncomplex_formats)
|
|
self.run_arith(my_and, fmt = noncomplex_formats)
|
|
|
|
def test_or(self):
|
|
def my_or(x, y):
|
|
# python doesn't allow bools on float
|
|
if isinstance(x, float):
|
|
x = int(x)
|
|
if isinstance(y, float):
|
|
y = int(y)
|
|
return x | y
|
|
|
|
self.run_arith_const(my_or, fmt = noncomplex_formats)
|
|
self.run_arith(my_or, fmt = noncomplex_formats)
|
|
|
|
def test_xor(self):
|
|
def my_xor(x, y):
|
|
# python doesn't allow bools on float
|
|
if isinstance(x, float):
|
|
x = int(x)
|
|
if isinstance(y, float):
|
|
y = int(y)
|
|
return x ^ y
|
|
|
|
self.run_arith_const(my_xor, fmt = noncomplex_formats)
|
|
self.run_arith(my_xor, fmt = noncomplex_formats)
|
|
|
|
# run a function on an image,
|
|
# 50,50 and 10,10 should have different values on the test image
|
|
def run_testunary(self, message, im, fn):
|
|
self.run_cmp(message, im, 50, 50, lambda x: run_fn(fn, x))
|
|
self.run_cmp(message, im, 10, 10, lambda x: run_fn(fn, x))
|
|
|
|
def run_unary(self, images, fn, fmt = all_formats):
|
|
[self.run_testunary(fn.func_name + ' image', x.cast(y), fn)
|
|
for x in images for y in fmt]
|
|
|
|
def test_abs(self):
|
|
def my_abs(x):
|
|
return abs(x)
|
|
|
|
im = -self.colour
|
|
self.run_unary([im], my_abs)
|
|
|
|
def test_lshift(self):
|
|
def my_lshift(x):
|
|
# python doesn't allow float << int
|
|
if isinstance(x, float):
|
|
x = int(x)
|
|
return x << 2
|
|
|
|
# we don't support constant << image, treat as a unary
|
|
self.run_unary(self.all_images, my_lshift, fmt = noncomplex_formats)
|
|
|
|
def test_rshift(self):
|
|
def my_rshift(x):
|
|
# python doesn't allow float >> int
|
|
if isinstance(x, float):
|
|
x = int(x)
|
|
return x >> 2
|
|
|
|
# we don't support constant >> image, treat as a unary
|
|
self.run_unary(self.all_images, my_rshift, fmt = noncomplex_formats)
|
|
|
|
def test_mod(self):
|
|
def my_mod(x):
|
|
return x % 2
|
|
|
|
# we don't support constant % image, treat as a unary
|
|
self.run_unary(self.all_images, my_mod, fmt = noncomplex_formats)
|
|
|
|
def test_pos(self):
|
|
def my_pos(x):
|
|
return +x
|
|
|
|
self.run_unary(self.all_images, my_pos)
|
|
|
|
def test_neg(self):
|
|
def my_neg(x):
|
|
return -x
|
|
|
|
self.run_unary(self.all_images, my_neg)
|
|
|
|
def test_invert(self):
|
|
def my_invert(x):
|
|
if isinstance(x, float):
|
|
x = int(x)
|
|
return ~x & 0xff
|
|
|
|
# ~image is trimmed to image max so it's hard to test for all formats
|
|
# just test uchar
|
|
self.run_unary(self.all_images, my_invert,
|
|
fmt = [Vips.BandFormat.UCHAR])
|
|
|
|
# test the rest of VipsArithmetic
|
|
|
|
def test_avg(self):
|
|
im = Vips.Image.black(50, 100)
|
|
test = im.insert(im + 100, 50, 0, expand = True)
|
|
|
|
test.write_to_file("x.v")
|
|
|
|
for fmt in all_formats:
|
|
self.assertAlmostEqual(test.cast(fmt).avg(), 50)
|
|
|
|
def test_polar(self):
|
|
im = Vips.Image.black(100, 100) + 100
|
|
im = im.complexform(im)
|
|
|
|
im = im.complex(Vips.OperationComplex.POLAR)
|
|
|
|
real = im.complexget(Vips.OperationComplexget.REAL)
|
|
self.assertAlmostEqual(real.avg(), 100 * 2 ** 0.5)
|
|
imag = im.complexget(Vips.OperationComplexget.IMAG)
|
|
self.assertAlmostEqual(imag.avg(), 45)
|
|
|
|
def test_rect(self):
|
|
im = Vips.Image.black(100, 100)
|
|
im = (im + 100 * 2 ** 0.5).complexform(im + 45)
|
|
|
|
im = im.complex(Vips.OperationComplex.RECT)
|
|
|
|
real = im.complexget(Vips.OperationComplexget.REAL)
|
|
self.assertAlmostEqual(real.avg(), 100)
|
|
imag = im.complexget(Vips.OperationComplexget.IMAG)
|
|
self.assertAlmostEqual(imag.avg(), 100)
|
|
|
|
def test_conjugate(self):
|
|
im = Vips.Image.black(100, 100) + 100
|
|
im = im.complexform(im)
|
|
|
|
im = im.complex(Vips.OperationComplex.CONJ)
|
|
|
|
real = im.complexget(Vips.OperationComplexget.REAL)
|
|
self.assertAlmostEqual(real.avg(), 100)
|
|
imag = im.complexget(Vips.OperationComplexget.IMAG)
|
|
self.assertAlmostEqual(imag.avg(), -100)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|