libvips/libsrc/conversion/im_tiff2vips.c
2007-08-29 16:23:50 +00:00

1491 lines
30 KiB
C

/* TIFF parts: Copyright (c) 1988, 1990 by Sam Leffler.
* All rights reserved.
*
* This file is provided for unrestricted use provided that this
* legend is included on all tape media and as a part of the
* software program in whole or part. Users may copy, modify or
* distribute this file at will.
* -----------------------------
* Modifications for VIPS: Kirk Martinez 1994
* 22/11/94 JC
* - more general
* - memory leaks fixed
* 20/3/95 JC
* - TIFF error handler added
* - read errors detected correctly
*
* Modified to handle LAB in tiff format.
* It convert LAB-tiff format to IM_TYPE_LABQ in vips format.
* Copyright July-1995 Ahmed Abbood.
*
*
* 19/9/95 JC
* - now calls TIFFClose ... stupid
* 25/1/96 JC
* - typo on MINISBLACK ...
* 7/4/97 JC
* - completely redone for TIFF 6
* - now full baseline TIFF 6 reader, and does CIELAB as well
* 11/4/97 JC
* - added partial read for tiled images
* 23/4/97 JC
* - extra subsample parameter
* - im_istiffpyramid() added
* 5/12/97 JC
* - if loading YCbCr, convert to IM_CODING_LABQ
* 1/5/98 JC
* - now reads 16-bit greyscale and RGB
* 26/10/98 JC
* - now used "rb" mode on systems that need binary open
* 12/11/98 JC
* - no sub-sampling if sub == 1
* 26/2/99 JC
* - ooops, else missing for subsample stuff above
* 2/10/99 JC
* - tiled 16-bit greyscale read was broken
* - added mutex for TIFF*() calls
* 11/5/00 JC
* - removed TIFFmalloc/TIFFfree usage
* 23/4/01 JC
* - HAVE_TIFF turns on TIFF goodness
* 24/5/01 JC
* - im_tiff2vips_header() added
* 11/7/01 JC
* - subsample now in input filename
* - ... and it's a page number (from 0) instead
* 21/8/02 JC
* - now reads CMYK
* - hmm, dpi -> ppm conversion was wrong!
* 10/9/02 JC
* - oops, handle TIFF errors better
* 2/12/02 JC
* - reads 8-bit RGBA
* 12/12/02 JC
* - reads 16-bit LAB
* 13/2/03 JC
* - pixels/cm res read was wrong
* 17/11/03 Andrey Kiselev
* - read 32-bit float greyscale and rgb
* 5/4/04
* - better handling of edge tiles (thanks Ruven)
* 16/4/04
* - cleanup
* - added broken tile read mode
* 18/5/04 Andrey Kiselev
* - better no resolution diagnostic
* 26/5/04
* - reads 16 bit RGBA
* 28/7/04
* - arrg, 16bit RGB was broken, thanks haida
* 26/11/04
* - add a TIFF warning handler, stops occasional libMagick exceptions
* 9/3/05
* - load 32-bit float LAB
* 8/4/05
* - onebit read no longer reads one byte too many on multiple of 8 wide
* images
* 22/6/05
* - 16 bit LAB read was broken
* 9/9/05
* - read any ICCPROFILE tag
* 8/5/06
* - set RGB16 and GREY16 Type
* 21/5/06
* - use external im_tile_cache() operation for great code shrinkage
* - less RAM usage too, esp. with >1 CPU
* - should be slightly faster
* - removed 'broken' read option
* 18/7/07 Andrey Kiselev
* - remove "b" option on TIFFOpen()
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/* Turn on debugging output.
#define DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#ifndef HAVE_TIFF
#include <vips/vips.h>
int
im_tiff2vips( const char *tiffile, IMAGE *im )
{
im_error( "im_tiff2vips", _( "TIFF support disabled" ) );
return( -1 );
}
int
im_istiffpyramid( const char *name )
{
return( 0 );
}
int
im_tiff2vips_header( const char *tiffile, IMAGE *im )
{
im_error( "im_tiff2vips", _( "TIFF support disabled" ) );
return( -1 );
}
#else /*HAVE_TIFF*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vips/vips.h>
#include <vips/thread.h>
#include <tiffio.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* Scanline-type process function.
*/
typedef void (*scanline_process_fn)( PEL *q, PEL *p, int n, void *user );
/* Stuff we track during a read.
*/
typedef struct {
/* Parameters.
*/
char *filename;
IMAGE *out;
/* From filename.
*/
int page;
/* The TIFF we read.
*/
TIFF *tiff;
/* Process for this image type.
*/
scanline_process_fn sfn;
void *client;
/* Geometry.
*/
int twidth, theight; /* Tile size */
/* Only need one of these, since we mutex around TIFF*().
*/
GMutex *tlock; /* Lock for TIFF*() calls */
} ReadTiff;
/* Reading a YCbCr image ... parameters we use for conversion.
*/
typedef struct {
/* Input and output.
*/
TIFF *tif; /* From here */
IMAGE *im; /* To here */
/* RGB <-> YCbCr conversion.
*/
float LumaRed, LumaGreen, LumaBlue;
/* RGB -> LAB conversion.
*/
void *table;
} YCbCrParams;
/* Handle TIFF errors here.
*/
static void
thandler_error( char *module, char *fmt, va_list ap )
{
im_verror( module, fmt, ap );
}
static void
thandler_warning( char *module, char *fmt, va_list ap )
{
char buf[256];
im_vsnprintf( buf, 256, fmt, ap );
im_warn( module, "%s", buf );
}
/* Test for field exists.
*/
static int
tfexists( TIFF *tif, ttag_t tag )
{
uint32 a, b;
if( TIFFGetField( tif, tag, &a, &b ) )
return( 1 );
else
return( 0 );
}
/* Test a uint16 field. Field must be defined and equal to the value.
*/
static int
tfequals( TIFF *tif, ttag_t tag, uint16 val )
{
uint16 fld;
if( !TIFFGetFieldDefaulted( tif, tag, &fld ) ) {
im_error( "im_tiff2vips",
_( "required field %d missing" ), tag );
return( 0 );
}
if( fld != val ) {
im_error( "im_tiff2vips", _( "required field %d=%d, not %d" ),
tag, fld, val );
return( 0 );
}
/* All ok.
*/
return( 1 );
}
/* Get a uint32 field.
*/
static int
tfget32( TIFF *tif, ttag_t tag, int *out )
{
uint32 fld;
if( !TIFFGetFieldDefaulted( tif, tag, &fld ) ) {
im_error( "im_tiff2vips",
_( "required field %d missing" ), tag );
return( 0 );
}
/* All ok.
*/
*out = fld;
return( 1 );
}
/* Get a uint16 field.
*/
static int
tfget16( TIFF *tif, ttag_t tag, int *out )
{
uint16 fld;
if( !TIFFGetFieldDefaulted( tif, tag, &fld ) ) {
im_error( "im_tiff2vips",
_( "required field %d missing" ), tag );
return( 0 );
}
/* All ok.
*/
*out = fld;
return( 1 );
}
/* Per-scanline process function for IM_CODING_LABQ.
*/
static void
labpack_line( PEL *q, PEL *p, int n, void *dummy )
{
int x;
for( x = 0; x < n; x++ ) {
q[0] = p[0];
q[1] = p[1];
q[2] = p[2];
q[3] = 0;
q += 4;
p += 3;
}
}
/* Read an 8-bit LAB image.
*/
static int
parse_labpack( ReadTiff *rtiff, IMAGE *out )
{
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 3 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 8 ) )
return( -1 );
out->Bands = 4;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_LABQ;
out->Type = IM_TYPE_LAB;
rtiff->sfn = labpack_line;
rtiff->client = NULL;
return( 0 );
}
/* Per-scanline process function for IM_CODING_LABQ.
*/
static void
labs_line( PEL *q, PEL *p, int n, void *dummy )
{
int x;
unsigned short *p1 = (unsigned short *) p;
short *q1 = (short *) q;
for( x = 0; x < n; x++ ) {
q1[0] = p1[0] >> 1;
q1[1] = p1[1];
q1[2] = p1[2];
q1 += 3;
p1 += 3;
}
}
/* Read a 16-bit LAB image.
*/
static int
parse_labs( ReadTiff *rtiff, IMAGE *out )
{
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 3 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 16 ) )
return( -1 );
out->Bands = 3;
out->Bbits = 16;
out->BandFmt = IM_BANDFMT_SHORT;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_LABS;
rtiff->sfn = labs_line;
rtiff->client = NULL;
return( 0 );
}
/* Per-scanline process function for IM_CODING_LABQ.
*/
static void
ycbcr_line( PEL *q, PEL *p, int n, void *dummy )
{
int x;
for( x = 0; x < n; x++ ) {
q[0] = p[0];
q[1] = p[1];
q[2] = p[2];
q[3] = 0;
q += 4;
p += 3;
}
}
/* Read a YCbCr image.
*/
static int
parse_ycbcr( ReadTiff *rtiff, IMAGE *out )
{
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 3 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 8 ) )
return( -1 );
out->Bands = 4;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_LABQ;
out->Type = IM_TYPE_LAB;
rtiff->sfn = ycbcr_line;
rtiff->client = NULL;
return( 0 );
}
/* Per-scanline process function for 1 bit images.
*/
static void
onebit_line( PEL *q, PEL *p, int n, void *flg )
{
/* Extract PHOTOMETRIC_INTERPRETATION.
*/
int pm = *((int *) flg);
int x, i, z;
PEL bits;
int black = (pm == PHOTOMETRIC_MINISBLACK) ? 0 : 255;
int white = black ^ -1;
/* (sigh) how many times have I written this?
*/
for( x = 0, i = 0; i < (n >> 3); i++ ) {
bits = (PEL) p[i];
for( z = 0; z < 8; z++, x++ ) {
q[x] = (bits & 128) ? white : black;
bits <<= 1;
}
}
/* Do last byte in line.
*/
if( n & 7 ) {
bits = p[i];
for( z = 0; z < (n & 7); z++ ) {
q[x + z] = (bits & 128) ? white : black;
bits <<= 1;
}
}
}
/* Read a 1-bit TIFF image. Pass in pixel values to use for black and white.
*/
static int
parse_onebit( ReadTiff *rtiff, int pm, IMAGE *out )
{
int *ppm;
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 1 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 1 ) )
return( -1 );
out->Bands = 1;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_B_W;
/* Note pm for later.
*/
if( !(ppm = IM_ARRAY( out, 1, int )) )
return( -1 );
*ppm = pm;
rtiff->sfn = onebit_line;
rtiff->client = ppm;
return( 0 );
}
/* Per-scanline process function for 8-bit greyscale images.
*/
static void
greyscale8_line( PEL *q, PEL *p, int n, void *flg )
{
/* Extract swap mask.
*/
PEL mask = *((PEL *) flg);
int x;
/* Read bytes, swapping sense if necessary.
*/
for( x = 0; x < n; x++ )
q[x] = p[x] ^ mask;
}
/* Read a 8-bit grey-scale TIFF image.
*/
static int
parse_greyscale8( ReadTiff *rtiff, int pm, IMAGE *out )
{
PEL *mask;
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 1 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 8 ) )
return( -1 );
/* Eor each pel with this later.
*/
if( !(mask = IM_ARRAY( out, 1, PEL )) )
return( -1 );
*mask = (pm == PHOTOMETRIC_MINISBLACK) ? 0 : 255;
out->Bands = 1;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_B_W;
rtiff->sfn = greyscale8_line;
rtiff->client = mask;
return( 0 );
}
/* Per-scanline process function for 16-bit greyscale images.
*/
static void
greyscale16_line( PEL *q, PEL *p, int n, void *flg )
{
/* Extract swap mask.
*/
unsigned short mask = *((unsigned short *) flg);
unsigned short *p1 = (unsigned short *) p;
unsigned short *q1 = (unsigned short *) q;
int x;
/* Read bytes, swapping sense if necessary.
*/
for( x = 0; x < n; x++ )
q1[x] = p1[x] ^ mask;
}
/* Read a 16-bit grey-scale TIFF image.
*/
static int
parse_greyscale16( ReadTiff *rtiff, int pm, IMAGE *out )
{
unsigned short *mask;
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 1 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 16 ) )
return( -1 );
/* Eor each pel with this later.
*/
if( !(mask = IM_ARRAY( out, 1, unsigned short )) )
return( -1 );
mask[0] = (pm == PHOTOMETRIC_MINISBLACK) ? 0 : 65535;
out->Bands = 1;
out->Bbits = 16;
out->BandFmt = IM_BANDFMT_USHORT;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_GREY16;
rtiff->sfn = greyscale16_line;
rtiff->client = mask;
return( 0 );
}
/* Per-scanline process function for 32-bit floating point greyscale images.
*/
static void
greyscale32f_line( PEL *q, PEL *p, int n )
{
float *p1 = (float *) p;
float *q1 = (float *) q;
int x;
for( x = 0; x < n; x++ )
q1[x] = p1[x];
}
/* Read a 32-bit floating point greyscale TIFF image. What do we do about
* MINISWHITE/MINISBLACK (pm)? Not sure ... just ignore it.
*/
static int
parse_greyscale32f( ReadTiff *rtiff, int pm, IMAGE *out )
{
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 1 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 32 ) )
return( -1 );
out->Bands = 1;
out->Bbits = 32;
out->BandFmt = IM_BANDFMT_FLOAT;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_B_W;
rtiff->sfn = (scanline_process_fn) greyscale32f_line;
rtiff->client = NULL;
return( 0 );
}
/* Per-scanline process function for palette images.
*/
static void
palette_line( PEL *q, PEL *p, int n, void *flg )
{
/* Extract maps.
*/
PEL *red = ((PEL **) flg)[0];
PEL *green = ((PEL **) flg)[1];
PEL *blue = ((PEL **) flg)[2];
int x;
/* Read bytes, generating colour.
*/
for( x = 0; x < n; x++ ) {
int i = *p++;
q[0] = red[i];
q[1] = green[i];
q[2] = blue[i];
q += 3;
}
}
/* Read a palette-ised TIFF image. Again, we only allow 8-bits for now.
*/
static int
parse_palette( ReadTiff *rtiff, IMAGE *out )
{
uint16 *tred, *tgreen, *tblue;
PEL *red, *green, *blue;
PEL **maps;
int i;
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 1 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 8 ) )
return( -1 );
/* Allocate mem for VIPS colour maps.
*/
if( !(red = IM_ARRAY( out, 256, PEL )) ||
!(green = IM_ARRAY( out, 256, PEL )) ||
!(blue = IM_ARRAY( out, 256, PEL )) ||
!(maps = IM_ARRAY( out, 3, PEL * )) )
return( -1 );
/* Get maps, convert to 8-bit data.
*/
if( !TIFFGetField( rtiff->tiff,
TIFFTAG_COLORMAP, &tred, &tgreen, &tblue ) ) {
im_error( "im_tiff2vips", _( "bad colormap" ) );
return( -1 );
}
for( i = 0; i < 256; i++ ) {
red[i] = tred[i] >> 8;
green[i] = tgreen[i] >> 8;
blue[i] = tblue[i] >> 8;
}
maps[0] = red;
maps[1] = green;
maps[2] = blue;
out->Bands = 3;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_sRGB;
rtiff->sfn = palette_line;
rtiff->client = maps;
return( 0 );
}
/* Per-scanline process function for 8-bit RGB/RGBA.
*/
static void
rgb8_line( PEL *q, PEL *p, int n, IMAGE *im )
{
int x, b;
for( x = 0; x < n; x++ ) {
for( b = 0; b < im->Bands; b++ )
q[b] = p[b];
q += im->Bands;
p += im->Bands;
}
}
/* Read an 8-bit RGB/RGBA image.
*/
static int
parse_rgb8( ReadTiff *rtiff, IMAGE *out )
{
int bands;
/* Check other TIFF fields to make sure we can read this. Can have 4
* bands for RGBA.
*/
if( !tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 8 ) ||
!tfget16( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, &bands ) )
return( -1 );
if( bands != 3 && bands != 4 ) {
im_error( "im_tiff2vips", _( "3 or 4 bands RGB TIFF only" ) );
return( -1 );
}
out->Bands = bands;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_sRGB;
rtiff->sfn = (scanline_process_fn) rgb8_line;
rtiff->client = out;
return( 0 );
}
/* Per-scanline process function for RGB/RGBA 16.
*/
static void
rgb16_line( PEL *q, PEL *p, int n, IMAGE *im )
{
int x, b;
unsigned short *p1 = (unsigned short *) p;
unsigned short *q1 = (unsigned short *) q;
for( x = 0; x < n; x++ ) {
for( b = 0; b < im->Bands; b++ )
q1[b] = p1[b];
q1 += im->Bands;
p1 += im->Bands;
}
}
/* Read a 16-bit RGB/RGBA image.
*/
static int
parse_rgb16( ReadTiff *rtiff, IMAGE *out )
{
int bands;
/* Check other TIFF fields to make sure we can read this. Can have 4
* bands for RGBA.
*/
if( !tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 16 ) ||
!tfget16( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, &bands ) )
return( -1 );
if( bands != 3 && bands != 4 ) {
im_error( "im_tiff2vips", _( "3 or 4 bands RGB TIFF only" ) );
return( -1 );
}
out->Bands = bands;
out->Bbits = 16;
out->BandFmt = IM_BANDFMT_USHORT;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_RGB16;
rtiff->sfn = (scanline_process_fn) rgb16_line;
rtiff->client = out;
return( 0 );
}
/* Per-scanline process function for 32f.
*/
static void
r32f_line( PEL *q, PEL *p, int n, void *dummy )
{
int x;
float *p1 = (float *) p;
float *q1 = (float *) q;
for( x = 0; x < n; x++ ) {
q1[0] = p1[0];
q1[1] = p1[1];
q1[2] = p1[2];
q1 += 3;
p1 += 3;
}
}
/* Read a 32-bit float image. RGB or LAB, with or without alpha.
*/
static int
parse_32f( ReadTiff *rtiff, int pm, IMAGE *out )
{
int bands;
if( !tfget16( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, &bands ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 32 ) )
return( -1 );
/* Can be 4 for images with an alpha channel.
*/
assert( bands == 3 || bands == 4 );
out->Bands = bands;
out->Bbits = 32;
out->BandFmt = IM_BANDFMT_FLOAT;
out->Coding = IM_CODING_NONE;
switch( pm ) {
case PHOTOMETRIC_CIELAB:
out->Type = IM_TYPE_LAB;
break;
case PHOTOMETRIC_RGB:
out->Type = IM_TYPE_sRGB;
break;
default:
assert( 0 );
}
rtiff->sfn = r32f_line;
rtiff->client = NULL;
return( 0 );
}
/* Per-scanline process function for CMYK8.
*/
static void
cmyk8_line( PEL *q, PEL *p, int n, void *dummy )
{
int x;
for( x = 0; x < n; x++ ) {
q[0] = p[0];
q[1] = p[1];
q[2] = p[2];
q[3] = p[3];
q += 4;
p += 4;
}
}
/* Read a CMYK image.
*/
static int
parse_cmyk( ReadTiff *rtiff, IMAGE *out )
{
if( !tfequals( rtiff->tiff, TIFFTAG_SAMPLESPERPIXEL, 4 ) ||
!tfequals( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, 8 ) ||
!tfequals( rtiff->tiff, TIFFTAG_INKSET, INKSET_CMYK ) )
return( -1 );
out->Bands = 4;
out->Bbits = 8;
out->BandFmt = IM_BANDFMT_UCHAR;
out->Coding = IM_CODING_NONE;
out->Type = IM_TYPE_CMYK;
rtiff->sfn = cmyk8_line;
rtiff->client = NULL;
return( 0 );
}
/* Read resolution from a TIFF image.
*/
static int
parse_resolution( TIFF *tiff, IMAGE *out )
{
float x, y;
int ru;
if( TIFFGetFieldDefaulted( tiff, TIFFTAG_XRESOLUTION, &x ) &&
TIFFGetFieldDefaulted( tiff, TIFFTAG_YRESOLUTION, &y ) &&
tfget16( tiff, TIFFTAG_RESOLUTIONUNIT, &ru ) ) {
switch( ru ) {
case RESUNIT_NONE:
break;
case RESUNIT_INCH:
/* In pixels-per-inch ... convert to mm.
*/
x /= 10.0 * 2.54;
y /= 10.0 * 2.54;
break;
case RESUNIT_CENTIMETER:
/* In pixels-per-centimetre ... convert to mm.
*/
x /= 10.0;
y /= 10.0;
break;
default:
im_error( "im_tiff2vips",
_( "unknown resolution unit" ) );
return( -1 );
}
}
else {
im_warning( "im_tiff2vips: no resolution information for "
"TIFF image \"%s\" -- defaulting to 1 pixel per mm",
TIFFFileName( tiff ) );
x = 1.0;
y = 1.0;
}
out->Xres = x;
out->Yres = y;
return( 0 );
}
/* Look at PhotometricInterpretation and BitsPerPixel, and try to figure out
* which of the image classes this is.
*/
static int
parse_header( ReadTiff *rtiff, IMAGE *out )
{
int pm, bps, format;
uint32 data_length;
void *data;
/* Ban separate planes, too annoying.
*/
if( tfexists( rtiff->tiff, TIFFTAG_PLANARCONFIG ) &&
!tfequals( rtiff->tiff,
TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG ) )
return( -1 );
/* Always need dimensions.
*/
if( !tfget32( rtiff->tiff, TIFFTAG_IMAGEWIDTH, &out->Xsize ) ||
!tfget32( rtiff->tiff, TIFFTAG_IMAGELENGTH, &out->Ysize ) ||
parse_resolution( rtiff->tiff, out ) )
return( -1 );
/* Try to find out which type of TIFF image it is.
*/
if( !tfget16( rtiff->tiff, TIFFTAG_PHOTOMETRIC, &pm ) ||
!tfget16( rtiff->tiff, TIFFTAG_BITSPERSAMPLE, &bps ) )
return( -1 );
switch( pm ) {
case PHOTOMETRIC_CIELAB:
switch( bps ) {
case 8:
if( parse_labpack( rtiff, out ) )
return( -1 );
break;
case 16:
if( parse_labs( rtiff, out ) )
return( -1 );
break;
case 32:
if( !tfget16( rtiff->tiff,
TIFFTAG_SAMPLEFORMAT, &format ) )
return( -1 );
if( format == SAMPLEFORMAT_IEEEFP ) {
if( parse_32f( rtiff, pm, out ) )
return( -1 );
}
else {
im_error( "im_tiff2vips",
_( "unsupported sample "
"format %d for lab image" ),
format );
return( -1 );
}
break;
default:
im_error( "im_tiff2vips",
_( "unsupported depth %d for LAB image" ),
bps );
return( -1 );
}
break;
case PHOTOMETRIC_YCBCR:
/* Easy decision!
*/
if( parse_ycbcr( rtiff, out ) )
return( -1 );
break;
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
switch( bps ) {
case 1:
if( parse_onebit( rtiff, pm, out ) )
return( -1 );
break;
case 8:
if( parse_greyscale8( rtiff, pm, out ) )
return( -1 );
break;
case 16:
if( parse_greyscale16( rtiff, pm, out ) )
return( -1 );
break;
case 32:
if( !tfget16( rtiff->tiff,
TIFFTAG_SAMPLEFORMAT, &format ) )
return( -1 );
if( format == SAMPLEFORMAT_IEEEFP ) {
if( parse_greyscale32f( rtiff, pm, out ) )
return( -1 );
}
else {
im_error( "im_tiff2vips",
_( "unsupported sample format "
"%d for greyscale image" ),
format );
return( -1 );
}
break;
default:
im_error( "im_tiff2vips", _( "unsupported depth %d "
"for greyscale image" ), bps );
return( -1 );
}
break;
case PHOTOMETRIC_PALETTE:
/* Full colour pallette.
*/
if( parse_palette( rtiff, out ) )
return( -1 );
break;
case PHOTOMETRIC_RGB:
/* Plain RGB.
*/
switch( bps ) {
case 8:
if( parse_rgb8( rtiff, out ) )
return( -1 );
break;
case 16:
if( parse_rgb16( rtiff, out ) )
return( -1 );
break;
case 32:
if( !tfget16( rtiff->tiff,
TIFFTAG_SAMPLEFORMAT, &format ) )
return( -1 );
if( format == SAMPLEFORMAT_IEEEFP ) {
if( parse_32f( rtiff, pm, out ) )
return( -1 );
}
else {
im_error( "im_tiff2vips",
_( "unsupported sample "
"format %d for rgb image" ),
format );
return( -1 );
}
break;
default:
im_error( "im_tiff2vips", _( "unsupported depth %d "
"for RGB image" ), bps );
return( -1 );
}
break;
case PHOTOMETRIC_SEPARATED:
if( parse_cmyk( rtiff, out ) )
return( -1 );
break;
default:
im_error( "im_tiff2vips", _( "unknown photometric "
"interpretation %d" ), pm );
return( -1 );
}
/* Read any ICC profile.
*/
if( TIFFGetField( rtiff->tiff,
TIFFTAG_ICCPROFILE, &data_length, &data ) ) {
void *data_copy;
if( !(data_copy = im_malloc( NULL, data_length )) )
return( -1 );
memcpy( data_copy, data, data_length );
if( im_meta_set_blob( out, IM_META_ICC_NAME,
(im_callback_fn) im_free, data_copy, data_length ) ) {
im_free( data_copy );
return( -1 );
}
}
return( 0 );
}
/* Allocate a tile buffer. Have one of these for each thread so we can unpack
* to vips in parallel.
*/
static void *
seq_start( IMAGE *out, ReadTiff *rtiff )
{
tdata_t *buf;
if( !(buf = im_malloc( NULL, TIFFTileSize( rtiff->tiff ) )) )
return( NULL );
return( (void *) buf );
}
/* Loop over the output region, painting in tiles from the file.
*/
static int
fill_region( REGION *out, tdata_t *buf, ReadTiff *rtiff )
{
Rect *r = &out->valid;
/* Find top left of tiles we need.
*/
int xs = (r->left / rtiff->twidth) * rtiff->twidth;
int ys = (r->top / rtiff->theight) * rtiff->theight;
/* Sizeof a line of bytes in the TIFF tile.
*/
int tls = TIFFTileSize( rtiff->tiff ) / rtiff->theight;
/* Sizeof a pel in the TIFF file. This won't work for formats which
* are <1 byte per pel, like onebit :-( Fortunately, it's only used
* to calculate addresses within a tile, and because we are wrapped in
* im_tile_cache(), we will never have to calculate positions within a
* tile.
*/
int tps = tls / rtiff->twidth;
int x, y, z;
for( y = ys; y < IM_RECT_BOTTOM( r ); y += rtiff->theight )
for( x = xs; x < IM_RECT_RIGHT( r ); x += rtiff->twidth ) {
Rect tile;
Rect hit;
/* Read that tile.
*/
g_mutex_lock( rtiff->tlock );
if( TIFFReadTile( rtiff->tiff, buf,
x, y, 0, 0 ) < 0 ) {
g_mutex_unlock( rtiff->tlock );
return( -1 );
}
g_mutex_unlock( rtiff->tlock );
/* The tile we read.
*/
tile.left = x;
tile.top = y;
tile.width = rtiff->twidth;
tile.height = rtiff->twidth;
/* The section that hits the region we are building.
*/
im_rect_intersectrect( &tile, r, &hit );
/* Unpack to VIPS format. We can do this in parallel.
* Just unpack the section of the tile we need.
*/
for( z = 0; z < hit.height; z++ ) {
PEL *p = (PEL *) buf +
(hit.left - tile.left) * tps +
(hit.top - tile.top + z) * tls;
PEL *q = (PEL *) IM_REGION_ADDR( out,
hit.left, hit.top + z );
rtiff->sfn( q, p, hit.width, rtiff->client );
}
}
return( 0 );
}
/* Tile-type TIFF reader core - pass in a per-tile transform. Generate into
* the im and do it all partially.
*/
static int
read_tilewise( ReadTiff *rtiff, IMAGE *out )
{
IMAGE *raw;
/* Tile cache: keep enough for two complete rows of tiles.
* This lets us do (smallish) area ops, like im_conv(), while
* still only hitting each TIFF tile once.
*/
if( !(raw = im_open_local( out, "cache", "p" )) )
return( -1 );
/* Get tiling geometry.
*/
if( !tfget32( rtiff->tiff, TIFFTAG_TILEWIDTH, &rtiff->twidth ) ||
!tfget32( rtiff->tiff, TIFFTAG_TILELENGTH, &rtiff->theight ) )
return( -1 );
/* Make sure we can write PIO-style.
*/
if( im_poutcheck( raw ) )
return( -1 );
/* Parse the TIFF header and set up raw.
*/
if( parse_header( rtiff, raw ) )
return( -1 );
/* Process and save as VIPS.
*/
if( im_demand_hint( raw, IM_SMALLTILE, NULL ) ||
im_generate( raw,
seq_start, fill_region, im_free, rtiff, NULL ) )
return( -1 );
/* Copy to out, adding a cache. Enough tiles for two complete rows.
*/
if( im_tile_cache( raw, out,
rtiff->twidth, rtiff->theight,
2 * (1 + raw->Xsize / rtiff->twidth) ) )
return( -1 );
return( 0 );
}
/* Scanline-type TIFF reader core - pass in a per-scanline transform.
*/
static int
read_scanlinewise( ReadTiff *rtiff, IMAGE *out )
{
PEL *vbuf;
tdata_t tbuf;
int y;
if( parse_header( rtiff, out ) )
return( -1 );
/* Make sure we can write WIO-style.
*/
if( im_outcheck( out ) || im_setupout( out ) )
return( -1 );
/* Make VIPS output buffer.
*/
if( !(vbuf = IM_ARRAY( out, IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Make TIFF line input buffer.
*/
if( !(tbuf = im_malloc( out, TIFFScanlineSize( rtiff->tiff ) )) )
return( -1 );
for( y = 0; y < out->Ysize; y++ ) {
/* Read TIFF scanline.
*/
if( TIFFReadScanline( rtiff->tiff, tbuf, y, 0 ) < 0 ) {
im_error( "im_tiff2vips", _( "read error" ) );
return( -1 );
}
/* Process and save as VIPS.
*/
rtiff->sfn( vbuf, tbuf, out->Xsize, rtiff->client );
if( im_writeline( y, out, vbuf ) )
return( -1 );
}
return( 0 );
}
/* Free a ReadTiff.
*/
static int
readtiff_destroy( ReadTiff *rtiff )
{
IM_FREEF( TIFFClose, rtiff->tiff );
IM_FREEF( g_mutex_free, rtiff->tlock );
return( 0 );
}
/* Make a ReadTiff.
*/
static ReadTiff *
readtiff_new( const char *filename, IMAGE *out )
{
ReadTiff *rtiff;
char name[FILENAME_MAX];
char mode[FILENAME_MAX];
char *p, *q;
if( !(rtiff = IM_NEW( out, ReadTiff )) )
return( NULL );
rtiff->filename = NULL;
rtiff->out = out;
im_filename_split( filename, name, mode );
rtiff->filename = im_strdup( out, name );
rtiff->page = 0;
rtiff->tiff = NULL;
rtiff->sfn = NULL;
rtiff->client = NULL;
rtiff->twidth = 0;
rtiff->theight = 0;
rtiff->tlock = g_mutex_new();
if( im_add_close_callback( out,
(im_callback_fn) readtiff_destroy, rtiff, NULL ) ) {
readtiff_destroy( rtiff );
return( NULL );
}
/* Parse out params.
*/
p = &mode[0];
if( (q = im_getnextoption( &p )) ) {
rtiff->page = atoi( q );
if( rtiff->page < 0 || rtiff->page > 1000 ) {
im_error( "im_tiff2vips", _( "bad page number %d" ),
rtiff->page );
return( NULL );
}
}
return( rtiff );
}
/* Pull out the nth directory from a TIFF file.
*/
static TIFF *
get_directory( const char *filename, int page )
{
TIFF *tif;
int i;
/* No need to use "b" and it means something different anyway.
*/
if( !(tif = TIFFOpen( filename, "r" )) ) {
im_error( "im_tiff2vips",
_( "unable to open \"%s\" for input" ),
filename );
return( NULL );
}
for( i = 0; i < page; i++ )
if( !TIFFReadDirectory( tif ) ) {
/* Run out of directories.
*/
TIFFClose( tif );
return( NULL );
}
return( tif );
}
int
im_istiffpyramid( const char *name )
{
TIFF *tif;
TIFFSetErrorHandler( (TIFFErrorHandler) thandler_error );
TIFFSetWarningHandler( (TIFFErrorHandler) thandler_warning );
if( (tif = get_directory( name, 2 )) ) {
/* We can see page 2 ... assume it is.
*/
TIFFClose( tif );
return( 1 );
}
return( 0 );
}
int
im_tiff2vips( const char *filename, IMAGE *out )
{
ReadTiff *rtiff;
#ifdef DEBUG
printf( "im_tiff2vips: libtiff version is \"%s\"\n", TIFFGetVersion() );
#endif /*DEBUG*/
TIFFSetErrorHandler( (TIFFErrorHandler) thandler_error );
TIFFSetWarningHandler( (TIFFErrorHandler) thandler_warning );
if( !(rtiff = readtiff_new( filename, out )) )
return( -1 );
if( !(rtiff->tiff = get_directory( rtiff->filename, rtiff->page )) ) {
im_error( "im_tiff2vips", _( "TIFF file does not "
"contain page %d" ), rtiff->page );
return( -1 );
}
if( TIFFIsTiled( rtiff->tiff ) ) {
if( read_tilewise( rtiff, out ) )
return( -1 );
}
else {
if( read_scanlinewise( rtiff, out ) )
return( -1 );
}
return( 0 );
}
/* Just parse the header.
*/
int
im_tiff2vips_header( const char *filename, IMAGE *out )
{
ReadTiff *rtiff;
TIFFSetErrorHandler( (TIFFErrorHandler) thandler_error );
TIFFSetWarningHandler( (TIFFErrorHandler) thandler_warning );
if( !(rtiff = readtiff_new( filename, out )) )
return( -1 );
if( !(rtiff->tiff = get_directory( rtiff->filename, rtiff->page )) ) {
im_error( "im_tiff2vips",
_( "TIFF file does not contain page %d" ),
rtiff->page );
return( -1 );
}
if( parse_header( rtiff, out ) )
return( -1 );
return( 0 );
}
#endif /*HAVE_TIFF*/