libvips/libsrc/colour/colour.c
John Cupitt 3c19110505 stuff
2008-03-14 17:01:58 +00:00

1126 lines
24 KiB
C

/* Convert colours in various ways.
* Written: January 1990
* Modified .. innumerable times
* Code by: DS, JC, J-Ph.L.
* 18/7/93 JC
* - final tidies before v7 release
* - ANSIfied
* - code for samples removed
* 5/5/94 JC
* - nint() -> rint() to make ANSI easier
* 14/3/96 JC
* - new display characterisation
* - speed-up to im_col_XYZ2rgb() and im_col_rgb2XYZ()
* 4/3/98 JC
* - new display profile for ultra2
* - new sRGB profile
* 17/8/98 JC
* - error_exit() removed, now clips
* 26/11/03 Andrey Kiselev
* - tiny clean-up for calcul_tables()
* - some reformatting
* 23/7/07
* - tiny cleanup for make_hI() prevents cond jump on ui in valgrind
* 14/3/08
* - more tiny cond jump valgrind fixes
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <vips/vips.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* Values for IM_TYPE_sRGB.
*/
static struct im_col_display srgb_profile = {
"sRGB",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ 3.2410, -1.5374, -0.4986 },
{ -0.9692, 1.8760, 0.0416 },
{ 0.0556, -0.2040, 1.0570 }
},
80.0, /* Luminosity of reference white */
.3127, .3291, /* x, y for reference white */
100, 100, 100, /* Light o/p for reference white */
255, 255, 255, /* Pixel values for ref. white */
1, 1, 1, /* Residual light o/p for black pixel */
2.4, 2.4, 2.4, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Values for my Ultra2, 20/2/98. Figures from a Minolta CA-100 CRT analyser.
* Contrast at max, brightness at 42, room lights out.
*/
static struct im_col_display ultra2 = {
"ultra2-20/2/98",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ .704, -0.302, -.103 },
{ -.708, 1.317, .032 },
{ .005, -.015, .071 }
},
64.0, /* Luminosity of reference white */
.2137, .3291, /* x, y for reference white */
14.4, 44.0, 5.4, /* Light o/p for reference white */
255, 255, 255, /* Pixel values for ref. white */
0.03, 0.03, 0.03, /* Residual light o/p for black pixel */
2.5, 2.5, 2.4, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Values for our display. These were obtained with a TV analyser in late
* Feb. 1990. The reference white is simply r=g=b=255.
*/
static struct im_col_display im_col_screen_white = {
"Screen",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ .660, -0.276, -.10 },
{ -.663, 1.293, .0265 },
{ .003, -.017, .0734 }
},
58.7, /* Luminosity of reference white */
.284, .273, /* x, y for reference white */
14.2, 38.4, 6.1, /* Light o/p for reference white */
255, 255, 255, /* Pixel values for ref. white */
0.0, 0.0, 0.0, /* Residual light o/p for black pixel */
2.8, 2.9, 2.9, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Adjusted version of above for SPARCstation2 screens. Turn down the gamma
* to make blacks blacker.
*/
static struct im_col_display im_col_SPARC_white = {
"SPARC",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ .660, -0.276, -.10 },
{ -.663, 1.293, .0265 },
{ .003, -.017, .0734 }
},
58.7, /* Luminosity of reference white */
.284, .273, /* x, y for reference white */
14.2, 38.4, 4, /* Light o/p for reference white */
255, 255, 255, /* Pixel values for ref. white */
0.0, 0.0, 0.0, /* Residual light o/p for black pixel */
2.0, 2.0, 2.0, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Values for D65 white. This gives a smaller range of colours than
* screen_white.
*/
static struct im_col_display im_col_D65_white = {
"D65",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ .660, -0.276, -.10 },
{ -.663, 1.293, .0265 },
{ .003, -.017, .0734 }
},
49.9, /* Luminosity of reference white */
.3127, .3290, /* x, y for reference white */
11.6, 35.0, 3.3, /* Light o/p for reference white */
241, 255, 177, /* Pixel values for ref. white */
0.1, 0.1, 0.1, /* Residual light o/p for black pixel */
2.8, 2.9, 2.7, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Values for Barco calibrator monitor
*/
static struct im_col_display im_col_barco_white = {
"Barco",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ .749, -0.322, -.123 },
{ -.755, 1.341, .033 },
{ .007, -.019, .0898 }
},
80.0, /* Luminosity of reference white */
.3128, .3292, /* x, y for reference white */
20.45, 52.73, 6.81, /* Light o/p for reference white */
255, 255, 255, /* Pixel values for ref. white */
0.02, 0.053, 0.007, /* Residual light o/p for black pixel */
2.23, 2.13, 2.12, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Values for Mitsubishi dye-sub colour printer.
*/
static struct im_col_display im_col_mitsubishi = {
"Mitsubishi_3_colour",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ 1.1997, -0.6296, -0.2755 },
{ -1.1529, 1.7383, -0.1074 },
{ -0.047, -0.109, 0.3829 }
},
95, /* Luminosity of reference white */
.3152, .3316, /* x, y for reference white */
25.33, 42.57, 15.85, /* Y all red, Y all green, Y all blue */
255, 255, 255, /* Pixel values for ref. white */
1.0, 1.0, 1.0, /* Residual light o/p for black pixel */
1.0, 1.0, 1.0, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
/* Display LAB of 100, 0, 0 as 255, 255, 255.
*/
static struct im_col_display im_col_relative = {
"relative",
DISP_DUMB,
{ /* XYZ -> luminance matrix */
{ .660, -0.276, -.10 },
{ -.663, 1.293, .0265 },
{ .003, -.017, .0734 }
},
100.0, /* Luminosity of reference white */
.284, .273, /* x, y for reference white */
24.23, 69.20, 6.57, /* Light o/p for reference white */
255, 255, 255, /* Pixel values for ref. white */
0.0, 0.0, 0.0, /* Residual light o/p for black pixel */
2.3, 2.3, 2.3, /* Gamma values for the three guns */
100, /* 'Background' (like brightness) */
100 /* 'Picture' (like contrast) */
};
struct im_col_display *
im_col_displays( int n )
{
static struct im_col_display *displays[] = {
&im_col_screen_white, /* index 0 */
&im_col_SPARC_white, /* index 1 */
&im_col_D65_white, /* index 2 */
&im_col_barco_white, /* index 3 */
&im_col_mitsubishi, /* index 4 */
&im_col_relative, /* index 5 */
&ultra2, /* index 6 */
&srgb_profile, /* index 7 */
NULL
};
if( n < 0 || n > IM_NUMBER( displays ) )
return( NULL );
return( displays[n] );
}
struct im_col_display *
im_col_display_name( const char *name )
{
int i;
struct im_col_display *d;
for( i = 0; (d = im_col_displays( i )); i++ )
if( g_ascii_strcasecmp( d->d_name, name ) == 0 )
return( d );
return( NULL );
}
/* Have the tables been made?
*/
static int made_ucs_tables = 0;
/* Arrays for lookup tables.
*/
static float LI[ 1001 ];
static float CI[ 3001 ];
static float hI[ 101 ][ 361 ];
/* Calculate Ch from ab, h in degrees.
*/
void
im_col_ab2Ch( float a, float b, float *C, float *h )
{
float in[3], out[3];
in[1] = a;
in[2] = b;
imb_Lab2LCh( in, out, 1 );
*C = out[1];
*h = out[2];
}
/* Calculate ab from Ch, h in degrees.
*/
void
im_col_Ch2ab( float C, float h, float *a, float *b )
{
float in[3], out[3];
in[1] = C;
in[2] = h;
imb_LCh2Lab( in, out, 1 );
*a = out[1];
*b = out[2];
}
/* Calculate Lab from XYZ.
*/
void
im_col_XYZ2Lab( float X, float Y, float Z, float *L, float *a, float *b )
{
float in[3], out[3];
im_colour_temperature temp;
in[0] = X;
in[1] = Y;
in[2] = Z;
temp.X0 = IM_D65_X0;
temp.Y0 = IM_D65_Y0;
temp.Z0 = IM_D65_Z0;
imb_XYZ2Lab( in, out, 1, &temp );
*L = out[0];
*a = out[1];
*b = out[2];
}
/* Calculate XYZ from Lab.
*/
void
im_col_Lab2XYZ( float L, float a, float b, float *X, float *Y, float *Z )
{
float in[3], out[3];
im_colour_temperature temp;
in[0] = L;
in[1] = a;
in[2] = b;
temp.X0 = IM_D65_X0;
temp.Y0 = IM_D65_Y0;
temp.Z0 = IM_D65_Z0;
imb_Lab2XYZ( in, out, 1, &temp );
*X = out[0];
*Y = out[1];
*Z = out[2];
}
/* Pythagorean distance between two points in colour space. Lab/XYZ/UCS etc.
*/
float
im_col_pythagoras( float L1, float a1, float b1, float L2, float a2, float b2 )
{
float dL = L1 - L2;
float da = a1 - a2;
float db = b1 - b2;
return( sqrt( dL*dL + da*da + db*db ) );
}
/* Make look_up tables for the Yr,Yb,Yg <=> r,g,b conversions.
*/
static void
calcul_tables( struct im_col_display *d, struct im_col_tab_disp *table )
{
int i;
float a, ga_i, ga, c, f, yo, p;
float maxr, maxg, maxb;
c = (d->d_B - 100.0) / 500.0;
/**** Red ****/
yo = d->d_Y0R;
a = d->d_YCR - yo;
ga = d->d_gammaR;
ga_i = 1.0 / ga;
p = d->d_P / 100.0;
f = d->d_Vrwr / p;
maxr = (float) d->d_Vrwr;
table->ristep = maxr / 1500.0;
table->rstep = a / 1500.0;
for( i = 0; i < 1501; i++ )
table->t_Yr2r[i] = f * (pow( i * table->rstep / a, ga_i ) - c);
for( i = 0; i < 1501; i++ )
table->t_r2Yr[i] = yo +
a * pow( i * table->ristep / f + c, ga );
/**** Green ****/
yo = d->d_Y0G;
a = d->d_YCG - yo;
ga = d->d_gammaG;
ga_i = 1.0 / ga;
p = d->d_P / 100.0;
f = d->d_Vrwg / p;
maxg = (float)d->d_Vrwg;
table->gistep = maxg / 1500.0;
table->gstep = a / 1500.0;
for( i = 0; i < 1501; i++ )
table->t_Yg2g[i] = f * (pow( i * table->gstep / a, ga_i ) - c);
for( i = 0; i < 1501; i++ )
table->t_g2Yg[i] = yo +
a * pow( i * table->gistep / f + c, ga );
/**** Blue ****/
yo = d->d_Y0B;
a = d->d_YCB - yo;
ga = d->d_gammaB;
ga_i = 1.0 / ga;
p = d->d_P / 100.0;
f = d->d_Vrwb / p;
maxb = (float)d->d_Vrwb;
table->bistep = maxb / 1500.0;
table->bstep = a / 1500.0;
for( i = 0; i < 1501; i++ )
table->t_Yb2b[i] = f * (pow( i * table->bstep / a, ga_i ) - c);
for( i = 0; i < 1501; i++ )
table->t_b2Yb[i] = yo +
a * pow( i * table->bistep / f + c, ga );
}
/* Make the lookup tables for rgb. Pass an IMAGE to allocate memory from.
*/
struct im_col_tab_disp *
im_col_make_tables_RGB( IMAGE *im, struct im_col_display *d )
{
struct im_col_tab_disp *table;
double **temp;
int i, j;
if( !(table = IM_NEW( im, struct im_col_tab_disp )) )
return( NULL );
if( d->d_type == DISP_DUMB )
calcul_tables( d, table );
if( !(temp = im_dmat_alloc( 0, 2, 0, 2 )) )
return( NULL );
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ ) {
table->mat_XYZ2lum[i][j] = d->d_mat[i][j];
temp[i][j] = d->d_mat[i][j];
}
if( im_invmat( temp, 3 ) ) {
im_free_dmat( temp, 0, 2, 0, 2 );
return( NULL );
}
for( i = 0; i < 3; i++ )
for( j = 0; j < 3; j++ )
table->mat_lum2XYZ[i][j] = temp[i][j];
im_free_dmat( temp, 0, 2, 0, 2 );
return( table );
}
/* Computes the transform: r,g,b => Yr,Yg,Yb. It finds Y values in
* lookup tables and calculates X, Y, Z.
*/
int
im_col_rgb2XYZ( struct im_col_display *d, struct im_col_tab_disp *table,
int r, int g, int b, float *X, float *Y, float *Z )
{
float Yr, Yg, Yb;
float *mat = &table->mat_lum2XYZ[0][0];
int i;
if( r < 0 || r > 255 || g < 0 || g > 255 || b < 0 || b > 255 ) {
im_errormsg( "im_col_rgb2XYZ: out of range [0,255]" );
return( -1 );
}
switch( d->d_type ) {
case DISP_DUMB:
/* Convert rgb to Yr, Yg, Yb. 3 times: r, g, b.
*/
i = r / table->ristep;
Yr = table->t_r2Yr[i];
i = g / table->gistep;
Yg = table->t_g2Yg[i];
i = b / table->bistep;
Yb = table->t_b2Yb[i];
break;
case DISP_BARCO:
Yr = d->d_Y0R + r*(d->d_YCR-d->d_Y0R)/255.0;
Yg = d->d_Y0G + g*(d->d_YCG-d->d_Y0G)/255.0;
Yb = d->d_Y0B + b*(d->d_YCB-d->d_Y0B)/255.0;
break;
default:
im_errormsg( "im_col_rgb2XYZ: bad display type" );
return( -1 );
}
/* Multiply through the inverse matrix to get XYZ values.
*/
*X = mat[0] * Yr + mat[1] * Yg + mat[2] * Yb;
*Y = mat[3] * Yr + mat[4] * Yg + mat[5] * Yb;
*Z = mat[6] * Yr + mat[7] * Yg + mat[8] * Yb;
return( 0 );
}
/* Turn XYZ into display colour. Return or=1 for out of gamut - rgb will
* contain an approximation of the right colour.
*/
int
im_col_XYZ2rgb( struct im_col_display *d, struct im_col_tab_disp *table,
float X, float Y, float Z,
int *r_ret, int *g_ret, int *b_ret,
int *or_ret )
{
float *mat = &table->mat_XYZ2lum[0][0];
int or = 0; /* Out of range flag */
float Yr, Yg, Yb;
int Yint;
int r, g, b;
/* Multiply through the matrix to get luminosity values.
*/
Yr = mat[0] * X + mat[1] * Y + mat[2] * Z;
Yg = mat[3] * X + mat[4] * Y + mat[5] * Z;
Yb = mat[6] * X + mat[7] * Y + mat[8] * Z;
/* Any negatives? If yes, set the out-of-range flag and bump up.
*/
if( Yr < d->d_Y0R ) {
or = 1;
Yr = d->d_Y0R;
}
if( Yg < d->d_Y0G ) {
or = 1;
Yg = d->d_Y0G;
}
if( Yb < d->d_Y0B ) {
or = 1;
Yb = d->d_Y0B;
}
/* Work out colour value (0-Vrw) to feed the tube to get that
* luminosity. Easy for BARCOs, harder for others.
*/
switch( d->d_type ) {
case DISP_DUMB:
Yint = (Yr - d->d_Y0R) / table->rstep;
if( Yint > 1500 ) {
or = 1;
Yint = 1500;
}
r = IM_RINT( table->t_Yr2r[Yint] );
Yint = (Yg - d->d_Y0G) / table->gstep;
if( Yint > 1500 ) {
or = 1;
Yint = 1500;
}
g = IM_RINT( table->t_Yg2g[Yint] );
Yint = (Yb - d->d_Y0B) / table->bstep;
if( Yint > 1500 ) {
or = 1;
Yint = 1500;
}
b = IM_RINT( table->t_Yb2b[Yint] );
break;
case DISP_BARCO:
r = IM_RINT( ((Yr - d->d_Y0R) / (d->d_YCR - d->d_Y0R)) * 255 );
g = IM_RINT( ((Yg - d->d_Y0G) / (d->d_YCG - d->d_Y0G)) * 255 );
b = IM_RINT( ((Yb - d->d_Y0B) / (d->d_YCB - d->d_Y0B)) * 255 );
/* Any silly values? Set out of range and adjust.
*/
if( r > d->d_Vrwr ) {
or = 1;
r = d->d_Vrwr;
}
if( g > d->d_Vrwg ) {
or = 1;
g = d->d_Vrwg;
}
if( b > d->d_Vrwb ) {
or = 1;
b = d->d_Vrwb;
}
if( r < 0 ) {
or = 1;
r = 0;
}
if( g < 0 ) {
or = 1;
g = 0;
}
if( b < 0 ) {
or = 1;
b = 0;
}
break;
default:
im_errormsg("XYZ2rgb: display unknown");
return( -1 );
/*NOTREACHED*/
}
*r_ret = r;
*g_ret = g;
*b_ret = b;
*or_ret = or;
return( 0 );
}
/* Functions to convert from Lab to uniform colour space and back.
*/
/* Constants for Lucs.
*/
#define c1 21.75
#define c2 0.3838
#define c3 38.54
/* Calculate Lucs from L.
*/
float
im_col_L2Lucs( float L )
{
float Lucs;
if( L >= 16.0 )
Lucs = (c1 * log( L ) + c2 * L - c3);
else
Lucs = 1.744 * L;
return( Lucs );
}
/* Generate Ll and LI (inverse) tables. Don't call the above for speed.
*/
static void
make_LI( void )
{
int i, j=0;
float L, Ll[ 1001 ];
for( i = 0; i < 1001; i++ )
{
L = i / 10.0;
if( L >= 16.0 )
Ll[ i ] = (c1 * log( L ) + c2 * L - c3);
else
Ll[ i ] = 1.744 * L;
}
for( i = 0; i < 1001; i++ )
{
while ( (Ll[j]<=i/10.0) && ( j<1001) ) j++;
LI[i] = (j-1)/10.0 + (i/10.0-Ll[j-1]) / ((Ll[j]-Ll[j-1])*10.0);
}
}
/* Inverse of above using table.
*/
float
im_col_Lucs2L( float Lucs )
{
int known; /* nearest input value in the table, <= Lucs */
known = floor(Lucs*10.0);
if( known < 0 )
known = 0;
if( known > 1000 )
known = 1000;
return( LI[known] + (LI[known+1]-LI[known])*(Lucs*10.0-known) );
}
/* Constants for Cucs.
*/
#define c4 0.162
#define c5 10.92
#define c6 0.638
#define c7 0.07216
#define c8 4.907
/* Calculate Cucs from C.
*/
float
im_col_C2Cucs( float C )
{
float Cucs;
Cucs = (c4 * C + c5 * (log( c6 + c7 * C )) + c8);
if ( Cucs<0 ) Cucs = 0;
return( Cucs );
}
/* Generate Cucs table. Again, inline the code above.
*/
static void
make_CI( void )
{
int i;
float C;
float Cl[3001];
for( i = 0; i < 3001; i++ ) {
C = i / 10.0;
Cl[i] = (c4 * C + c5 * (log( c6 + c7 * C )) + c8);
}
for( i = 0; i < 3001; i++ ) {
int j;
for( j = 0; j < 3001 && Cl[j] <= i / 10.0; j++ )
;
CI[i] = (j - 1) / 10.0 +
(i / 10.0 - Cl[j - 1]) / ((Cl[j] - Cl[j - 1]) * 10.0);
}
}
/* Inverse of above using table.
*/
float
im_col_Cucs2C( float Cucs )
{
int known; /* nearest input value in the table, <= Cucs */
known = floor(Cucs*10.0);
if( known < 0 )
known = 0;
if( known > 3000 )
known = 3000;
return( CI[known] + (CI[known+1]-CI[known])*(Cucs*10.0-known) );
}
/* Calculate hucs from h and C.
*/
float
im_col_Ch2hucs( float C, float h )
{
float P, D, f, g;
float k4, k5, k6, k7, k8;
float hucs;
if( h < 49.1 ) {
k4 = 133.87;
k5 = -134.5;
k6 = -.924;
k7 = 1.727;
k8 = 340.0;
}
else if( h < 110.1 ) {
k4 = 11.78;
k5 = -12.7;
k6 = -.218;
k7 = 2.12;
k8 = 333.0;
}
else if( h < 269.6 ) {
k4 = 13.87;
k5 = 10.93;
k6 = 0.14;
k7 = 1.0;
k8 = -83.0;
}
else {
k4 = .14;
k5 = 5.23;
k6 = .17;
k7 = 1.61;
k8 = 233.0;
}
P = cos( IM_RAD( k8 + k7 * h ) );
D = k4 + k5 * P * pow( fabs( P ), k6 );
g = C * C * C * C;
f = sqrt( g / (g + 1900.0) );
hucs = h + D * f;
return( hucs );
}
/* The difficult one: hucs. Again, inline.
*/
static void
make_hI( void )
{
int i, j, k;
float P, D, C, f, hl[101][361];
float k4, k5, k6, k7, k8;
for( i = 0; i < 361; i++ ) {
if( i < 49.1 ) {
k4 = 133.87;
k5 = -134.5;
k6 = -.924;
k7 = 1.727;
k8 = 340.0;
}
else if( i < 110.1 ) {
k4 = 11.78;
k5 = -12.7;
k6 = -.218;
k7 = 2.12;
k8 = 333.0;
}
else if( i < 269.6 ) {
k4 = 13.87;
k5 = 10.93;
k6 = 0.14;
k7 = 1.0;
k8 = -83.0;
}
else {
k4 = .14;
k5 = 5.23;
k6 = .17;
k7 = 1.61;
k8 = 233.0;
}
P = cos( IM_RAD( k8 + k7 * i ) );
D = k4 + k5 * P * pow( fabs( P ), k6 );
for( j = 0; j < 101; j++ ) {
float g;
C = j * 2.0;
g = C * C * C * C;
f = sqrt( g / (g + 1900.0) );
hl[j][i] = i + D * f;
}
}
for( j = 0; j < 101; j++ ) {
k = 0;
for( i = 0; i < 361; i++ ) {
while( k < 361 && hl[j][k] <= i )
k++;
hI[j][i] = k - 1 + (i - hl[j][k - 1]) /
(hl[j][k] - hl[j][k - 1]);
}
}
}
/* Inverse of above, using table.
*/
float
im_col_Chucs2h( float C, float hucs )
{
int r, known; /* nearest input value in the table, <= hucs */
/* Which row of the table?
*/
r = (int) ((C + 1.0) / 2.0);
if( r < 0 )
r = 0;
if( r > 100 )
r = 100;
known = floor( hucs );
if( known < 0 )
known = 0;
if( known > 360 )
known = 360;
return( hI[r][known] +
(hI[r][(known + 1) % 360] - hI[r][known]) * (hucs - known) );
}
/* Make the lookup tables for ucs.
*/
void
im_col_make_tables_UCS( void )
{
if( !made_ucs_tables ) {
make_LI();
make_CI();
make_hI();
made_ucs_tables = -1;
}
}
/* CMC colour difference using the above.
*/
float
im_col_dECMC( float L1, float a1, float b1,
float L2, float a2, float b2 )
{
float h1, C1;
float h2, C2;
float Lucs1, Cucs1, hucs1;
float Lucs2, Cucs2, hucs2;
float aucs1, bucs1;
float aucs2, bucs2;
/* Turn to LCh.
*/
im_col_ab2Ch( a1, b1, &C1, &h1 );
im_col_ab2Ch( a2, b2, &C2, &h2 );
/* Turn to LCh in CMC space.
*/
Lucs1 = im_col_L2Lucs( L1 );
Cucs1 = im_col_C2Cucs( C1 );
hucs1 = im_col_Ch2hucs( C1, h1 );
Lucs2 = im_col_L2Lucs( L2 );
Cucs2 = im_col_C2Cucs( C2 );
hucs2 = im_col_Ch2hucs( C2, h2 );
/* Turn to Lab in CMC space.
*/
im_col_Ch2ab( Cucs1, hucs1, &aucs1, &bucs1 );
im_col_Ch2ab( Cucs2, hucs2, &aucs2, &bucs2 );
/* Find difference.
*/
return( im_col_pythagoras( Lucs1, aucs1, bucs1, Lucs2, aucs2, bucs2 ) );
}
/* Find h in degrees from a/b.
*/
double
im_col_ab2h( double a, double b )
{
double h;
/* We have to be careful we have the right quadrant!
*/
if( a == 0 ) {
if( b < 0.0 )
h = 270;
else if( b == 0.0 )
h = 0;
else
h = 90;
}
else {
double t = atan( b / a );
if( a > 0.0 )
if( b < 0.0 )
h = IM_DEG( t + IM_PI * 2.0 );
else
h = IM_DEG( t );
else
h = IM_DEG( t + IM_PI );
}
return( h );
}
/* CIEDE2000 ... from
Luo, Cui, Rigg, "The Development of the CIE 2000 Colour-Difference
Formula: CIEDE2000", COLOR research and application, pp 340
*/
float
im_col_dE00( float L1, float a1, float b1,
float L2, float a2, float b2 )
{
/* Code if you want XYZ params and the colour temp used in the reference
float
im_col_dE00( float X1, float Y1, float Z1,
float X2, float Y2, float Z2 )
{
const double X0 = 94.811;
const double Y0 = 100.0;
const double Z0 = 107.304;
#define f(I) ((I) > 0.008856 ? \
cbrt( (I), 1.0 / 3.0 ) : 7.7871 * (I) + (16.0 / 116.0))
double nX1 = f( X1 / X0 );
double nY1 = f( Y1 / Y0 );
double nZ1 = f( Z1 / Z0 );
double L1 = 116 * nY1 - 16;
double a1 = 500 * (nX1 - nY1);
double b1 = 200 * (nY1 - nZ1);
double nX2 = f( X2 / X0 );
double nY2 = f( Y2 / Y0 );
double nZ2 = f( Z2 / Z0 );
double L2 = 116 * nY2 - 16;
double a2 = 500 * (nX2 - nY2);
double b2 = 200 * (nY2 - nZ2);
*/
/* Chroma and mean chroma (C bar)
*/
double C1 = sqrt( a1 * a1 + b1 * b1 );
double C2 = sqrt( a2 * a2 + b2 * b2 );
double Cb = (C1 + C2) / 2;
/* G
*/
double Cb7 = Cb * Cb * Cb * Cb * Cb * Cb * Cb;
double G = 0.5 * (1 - sqrt( Cb7 / (Cb7 + pow( 25, 7 )) ));
/* L', a', b', C', h'
*/
double L1d = L1;
double a1d = (1 + G) * a1;
double b1d = b1;
double C1d = sqrt( a1d * a1d + b1d * b1d );
double h1d = im_col_ab2h( a1d, b1d );
double L2d = L2;
double a2d = (1 + G) * a2;
double b2d = b2;
double C2d = sqrt( a2d * a2d + b2d * b2d );
double h2d = im_col_ab2h( a2d, b2d );
/* L' bar, C' bar, h' bar
*/
double Ldb = (L1d + L2d) / 2;
double Cdb = (C1d + C2d) / 2;
double hdb = fabs( h1d - h2d ) < 180 ?
(h1d + h2d) / 2 :
fabs( h1d + h2d - 360 ) / 2;
/* dtheta, RC
*/
double hdbd = (hdb - 275) / 25;
double dtheta = 30 * exp( -(hdbd * hdbd) );
double Cdb7 = Cdb * Cdb * Cdb * Cdb * Cdb * Cdb * Cdb;
double RC = 2 * sqrt( Cdb7 / (Cdb7 + pow( 25, 7 )) );
/* RT, T.
*/
double RT = -sin( IM_RAD( 2 * dtheta ) ) * RC;
double T = 1 -
0.17 * cos( IM_RAD( hdb - 30 ) ) +
0.24 * cos( IM_RAD( 2 * hdb ) ) +
0.32 * cos( IM_RAD( 3 * hdb + 6 ) ) -
0.20 * cos( IM_RAD( 4 * hdb - 63 ) );
/* SL, SC, SH
*/
double Ldb50 = Ldb - 50;
double SL = 1 + (0.015 * Ldb50 * Ldb50) / sqrt( 20 + Ldb50 * Ldb50);
double SC = 1 + 0.045 * Cdb;
double SH = 1 + 0.015 * Cdb * T;
/* hue difference ... careful!
*/
double dhd = fabs( h1d - h2d ) < 180 ?
h1d - h2d :
360 - (h1d - h2d);
/* dLd, dCd dHd
*/
double dLd = L1d - L2d;
double dCd = C1d - C2d;
double dHd = 2 * sqrt( C1d * C2d ) * sin( IM_RAD( dhd / 2 ) );
/* Parametric factors for viewing parameters.
*/
const double kL = 1.0;
const double kC = 1.0;
const double kH = 1.0;
/* Normalised terms.
*/
double nL = dLd / (kL * SL);
double nC = dCd / (kC * SC);
double nH = dHd / (kH * SH);
/* dE00!!
*/
double dE00 = sqrt( nL * nL + nC * nC + nH * nH + RT * nC * nH );
/*
printf( "X1 = %g, Y1 = %g, Z1 = %g\n", X1, Y1, Z1 );
printf( "X2 = %g, Y2 = %g, Z2 = %g\n", X2, Y2, Z2 );
printf( "L1 = %g, a1 = %g, b1 = %g\n", L1, a1, b1 );
printf( "L2 = %g, a2 = %g, b2 = %g\n", L2, a2, b2 );
printf( "L1d = %g, a1d = %g, b1d = %g, C1d = %g, h1d = %g\n",
L1d, a1d, b1d, C1d, h1d );
printf( "L2d = %g, a2d = %g, b2d = %g, C2d = %g, h2d = %g\n",
L2d, a2d, b2d, C2d, h2d );
printf( "G = %g, T = %g, SL = %g, SC = %g, SH = %g, RT = %g\n",
G, T, SL, SC, SH, RT );
printf( "dE00 = %g\n", dE00 );
*/
return( dE00 );
}