364 lines
9.0 KiB
C
364 lines
9.0 KiB
C
/* im_add.c
|
|
*
|
|
* Copyright: 1990, N. Dessipris.
|
|
*
|
|
* Author: Nicos Dessipris
|
|
* Written on: 02/05/1990
|
|
* Modified on:
|
|
* 29/4/93 J.Cupitt
|
|
* - now works for partial images
|
|
* 1/7/93 JC
|
|
* - adapted for partial v2
|
|
* 9/5/95 JC
|
|
* - simplified: now just handles 10 cases (instead of 50), using
|
|
* im_clip2*() to help
|
|
* - now uses im_wrapmany() rather than im_generate()
|
|
* 31/5/96 JC
|
|
* - SWAP() removed, *p++ removed
|
|
* 27/9/04
|
|
* - im__cast_and_call() now matches bands as well
|
|
* - ... so 1 band + 4 band image -> 4 band image
|
|
* 8/12/06
|
|
* - add liboil support
|
|
* 18/8/08
|
|
* - revise upcasting system
|
|
* - im__cast_and_call() no longer sets bbits for you
|
|
* - add gtkdoc comments
|
|
* - remove separate complex case, just double size
|
|
*/
|
|
|
|
/*
|
|
|
|
This file is part of VIPS.
|
|
|
|
VIPS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
|
|
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif /*HAVE_CONFIG_H*/
|
|
#include <vips/intl.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include <vips/vips.h>
|
|
#include <vips/internal.h>
|
|
|
|
#ifdef HAVE_LIBOIL
|
|
#include <liboil/liboil.h>
|
|
#endif /*HAVE_LIBOIL*/
|
|
|
|
#ifdef WITH_DMALLOC
|
|
#include <dmalloc.h>
|
|
#endif /*WITH_DMALLOC*/
|
|
|
|
#define LOOP( IN, OUT ) { \
|
|
IN *p1 = (IN *) in[0]; \
|
|
IN *p2 = (IN *) in[1]; \
|
|
OUT *q = (OUT *) out; \
|
|
\
|
|
for( x = 0; x < sz; x++ ) \
|
|
q[x] = p1[x] + p2[x]; \
|
|
}
|
|
|
|
static void
|
|
add_buffer( PEL **in, PEL *out, int width, IMAGE *im )
|
|
{
|
|
/* Complex just doubles the size.
|
|
*/
|
|
const int sz = width * im->Bands * (im_iscomplex( im ) ? 2 : 1);
|
|
|
|
int x;
|
|
|
|
/* Add all input types. Keep types here in sync with bandfmt_add[]
|
|
* below.
|
|
*/
|
|
switch( im->BandFmt ) {
|
|
case IM_BANDFMT_UCHAR: LOOP( unsigned char, unsigned short ); break;
|
|
case IM_BANDFMT_CHAR: LOOP( signed char, signed short ); break;
|
|
case IM_BANDFMT_USHORT: LOOP( unsigned short, unsigned int ); break;
|
|
case IM_BANDFMT_SHORT: LOOP( signed short, signed int ); break;
|
|
case IM_BANDFMT_UINT: LOOP( unsigned int, unsigned int ); break;
|
|
case IM_BANDFMT_INT: LOOP( signed int, signed int ); break;
|
|
|
|
case IM_BANDFMT_FLOAT:
|
|
case IM_BANDFMT_COMPLEX:
|
|
#ifdef HAVE_LIBOIL
|
|
oil_add_f32( (float *) out,
|
|
(float *) in[0], (float *) in[1], sz );
|
|
#else /*!HAVE_LIBOIL*/
|
|
LOOP( float, float );
|
|
#endif /*HAVE_LIBOIL*/
|
|
break;
|
|
|
|
case IM_BANDFMT_DOUBLE:
|
|
case IM_BANDFMT_DPCOMPLEX:
|
|
LOOP( double, double );
|
|
break;
|
|
|
|
default:
|
|
assert( 0 );
|
|
}
|
|
}
|
|
|
|
/* Save a bit of typing.
|
|
*/
|
|
#define UC IM_BANDFMT_UCHAR
|
|
#define C IM_BANDFMT_CHAR
|
|
#define US IM_BANDFMT_USHORT
|
|
#define S IM_BANDFMT_SHORT
|
|
#define UI IM_BANDFMT_UINT
|
|
#define I IM_BANDFMT_INT
|
|
#define F IM_BANDFMT_FLOAT
|
|
#define X IM_BANDFMT_COMPLEX
|
|
#define D IM_BANDFMT_DOUBLE
|
|
#define DX IM_BANDFMT_DPCOMPLEX
|
|
|
|
/* For two integer types, the "largest", ie. one which can represent the
|
|
* full range of both.
|
|
*/
|
|
static int bandfmt_largest[6][6] = {
|
|
/* UC C US S UI I */
|
|
/* UC */ { UC, S, US, S, UI, I },
|
|
/* C */ { S, C, I, S, I, I },
|
|
/* US */ { US, I, US, I, UI, I },
|
|
/* S */ { S, S, I, S, I, I },
|
|
/* UI */ { UI, I, UI, I, UI, I },
|
|
/* I */ { I, I, I, I, I, I }
|
|
};
|
|
|
|
/* For two formats, find one which can represent the full range of both.
|
|
*/
|
|
VipsBandFmt
|
|
im__format_common( IMAGE *in1, IMAGE *in2 )
|
|
{
|
|
if( im_iscomplex( in1 ) || im_iscomplex( in2 ) ) {
|
|
/* What kind of complex?
|
|
*/
|
|
if( in1->BandFmt == IM_BANDFMT_DPCOMPLEX ||
|
|
in2->BandFmt == IM_BANDFMT_DPCOMPLEX )
|
|
/* Output will be DPCOMPLEX.
|
|
*/
|
|
return( IM_BANDFMT_DPCOMPLEX );
|
|
else
|
|
return( IM_BANDFMT_COMPLEX );
|
|
|
|
}
|
|
else if( im_isfloat( in1 ) || im_isfloat( in2 ) ) {
|
|
/* What kind of float?
|
|
*/
|
|
if( in1->BandFmt == IM_BANDFMT_DOUBLE ||
|
|
in2->BandFmt == IM_BANDFMT_DOUBLE )
|
|
return( IM_BANDFMT_DOUBLE );
|
|
else
|
|
return( IM_BANDFMT_FLOAT );
|
|
}
|
|
else
|
|
/* Must be int+int -> int.
|
|
*/
|
|
return( bandfmt_largest[in1->BandFmt][in2->BandFmt] );
|
|
}
|
|
|
|
/* Make an n-band image. Input 1 or n bands.
|
|
*/
|
|
static int
|
|
im__bandup( IMAGE *in, IMAGE *out, int n )
|
|
{
|
|
IMAGE *bands[256];
|
|
int i;
|
|
|
|
if( in->Bands == n )
|
|
return( im_copy( in, out ) );
|
|
if( in->Bands != 1 ) {
|
|
im_error( "im__bandup", _( "not one band or %d bands" ), n );
|
|
return( -1 );
|
|
}
|
|
if( n > 256 || n < 1 ) {
|
|
im_error( "im__bandup", "%s", _( "bad bands" ) );
|
|
return( -1 );
|
|
}
|
|
|
|
for( i = 0; i < n; i++ )
|
|
bands[i] = in;
|
|
|
|
return( im_gbandjoin( bands, out, n ) );
|
|
}
|
|
|
|
/* Cast in1 and in2 up to a common type and number of bands, then call the
|
|
* function. Also used by subtract, multiply, divide, etc.
|
|
*/
|
|
int
|
|
im__cast_and_call( IMAGE *in1, IMAGE *in2, IMAGE *out,
|
|
im_wrapmany_fn fn, void *a )
|
|
{
|
|
VipsBandFmt fmt;
|
|
IMAGE *t[5];
|
|
|
|
if( im_open_local_array( out, t, 4, "type cast:1", "p" ) )
|
|
return( -1 );
|
|
|
|
/* Cast our input images up to a common type.
|
|
*/
|
|
fmt = im__format_common( in1, in2 );
|
|
if( im_clip2fmt( in1, t[0], fmt ) ||
|
|
im_clip2fmt( in2, t[1], fmt ) )
|
|
return( -1 );
|
|
|
|
/* Force bands up to the same as out.
|
|
*/
|
|
if( im__bandup( t[0], t[2], out->Bands ) ||
|
|
im__bandup( t[1], t[3], out->Bands ) )
|
|
return( -1 );
|
|
|
|
/* And process!
|
|
*/
|
|
t[4] = NULL;
|
|
if( im_wrapmany( t + 2, out, fn, out, a ) )
|
|
return( -1 );
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/* Type promotion for addition. Sign and value preserving. Make sure these
|
|
* match the case statement in add_buffer() above.
|
|
*/
|
|
static int bandfmt_add[10] = {
|
|
/* UC C US S UI I F X D DX */
|
|
US, S, UI, I, UI, I, F, X, D, DX
|
|
};
|
|
|
|
/**
|
|
* im_add:
|
|
* @in1: input #IMAGE 1
|
|
* @in2: input #IMAGE 2
|
|
* @out: output #IMAGE
|
|
*
|
|
* This operation calculates @in1 + @in2 and writes the result to @out.
|
|
* The images must be the same size. They may have any format.
|
|
*
|
|
* If the number of bands differs, one of the images
|
|
* must have one band. In this case, an n-band image is formed from the
|
|
* one-band image by joining n copies of the one-band image together, and then
|
|
* the two n-band images are operated upon.
|
|
*
|
|
* The two input images are cast up to the smallest common type (see table
|
|
* Smallest common format in
|
|
* <link linkend="VIPS-arithmetic">arithmetic</link>), then the
|
|
* following table is used to determine the output type:
|
|
*
|
|
* <table>
|
|
* <title>im_add() type promotion</title>
|
|
* <tgroup cols='2' align='left' colsep='1' rowsep='1'>
|
|
* <thead>
|
|
* <row>
|
|
* <entry>input type</entry>
|
|
* <entry>output type</entry>
|
|
* </row>
|
|
* </thead>
|
|
* <tbody>
|
|
* <row>
|
|
* <entry>uchar</entry>
|
|
* <entry>ushort</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>char</entry>
|
|
* <entry>short</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>ushort</entry>
|
|
* <entry>uint</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>short</entry>
|
|
* <entry>int</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>uint</entry>
|
|
* <entry>uint</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>int</entry>
|
|
* <entry>int</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>float</entry>
|
|
* <entry>float</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>double</entry>
|
|
* <entry>double</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>complex</entry>
|
|
* <entry>complex</entry>
|
|
* </row>
|
|
* <row>
|
|
* <entry>double complex</entry>
|
|
* <entry>double complex</entry>
|
|
* </row>
|
|
* </tbody>
|
|
* </tgroup>
|
|
* </table>
|
|
*
|
|
* In other words, the output type is just large enough to hold the whole
|
|
* range of possible values.
|
|
*
|
|
* See also: im_subtract(), im_lintra().
|
|
*
|
|
* Returns: 0 on success, -1 on error
|
|
*/
|
|
int
|
|
im_add( IMAGE *in1, IMAGE *in2, IMAGE *out )
|
|
{
|
|
if( im_piocheck( in1, out ) ||
|
|
im_pincheck( in2 ) ||
|
|
im_check_bands_1orn( "im_add", in1, in2 ) ||
|
|
im_check_uncoded( "im_add", in1 ) ||
|
|
im_check_uncoded( "im_add", in2 ) )
|
|
return( -1 );
|
|
|
|
if( im_cp_descv( out, in1, in2, NULL ) )
|
|
return( -1 );
|
|
|
|
/* What number of bands will we write?
|
|
*/
|
|
out->Bands = IM_MAX( in1->Bands, in2->Bands );
|
|
|
|
/* What output type will we write? int, float or complex.
|
|
*/
|
|
out->BandFmt = bandfmt_add[im__format_common( in1, in2 )];
|
|
out->Bbits = im_bits_of_fmt( out->BandFmt );
|
|
|
|
/* And process!
|
|
*/
|
|
if( im__cast_and_call( in1, in2, out,
|
|
(im_wrapmany_fn) add_buffer, NULL ) )
|
|
return( -1 );
|
|
|
|
/* Success!
|
|
*/
|
|
return( 0 );
|
|
}
|