libvips/libsrc/mosaicing/gegl-sampler-yafr-smooth.c

687 lines
23 KiB
C

/* This file is part of GEGL
*
* GEGL is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 3 of the
* License, or (at your option) any later version.
*
* GEGL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GEGL; if not, see
* <http://www.gnu.org/licenses/>.
*
* 2008 (c) Nicolas Robidoux (developer of Yet Another Fast
* Resampler).
*
* Acknowledgement: N. Robidoux's research on YAFR funded in part by
* an NSERC (National Science and Engineering Research Council of
* Canada) Discovery Grant.
*/
#include <glib-object.h>
#include "gegl-types.h"
#include "gegl-buffer-private.h"
#include "gegl-sampler-yafr.h"
#include <math.h>
#ifndef restrict
#ifdef __restrict
#define restrict __restrict
#else
#ifdef __restrict__
#define restrict __restrict__
#else
#define restrict
#endif
#endif
#endif
#ifndef unlikely
#ifdef __builtin_expect
#define unlikely(x) __builtin_expect((x),0)
#else
#define unlikely(x) (x)
#endif
#endif
enum
{
PROP_0,
PROP_LAST
};
static void gegl_sampler_yafr_get ( GeglSampler *self,
const gdouble x,
const gdouble y,
void *output);
static void set_property ( GObject *gobject,
guint property_id,
const GValue *value,
GParamSpec *pspec);
static void get_property (GObject *gobject,
guint property_id,
GValue *value,
GParamSpec *pspec);
G_DEFINE_TYPE (GeglSamplerYafr, gegl_sampler_yafr, GEGL_TYPE_SAMPLER)
/*
* YAFR = Yet Another Fast Resampler
*
* Yet Another Fast Resampler is a nonlinear resampler which consists
* of a linear scheme (in this version, Catmull-Rom) plus a nonlinear
* sharpening correction the purpose of which is the straightening of
* diagonal interfaces between flat colour areas.
*
* Key properties:
*
* YAFR (smooth) is interpolatory:
*
* If asked for the value at the center of an input pixel, it will
* return the corresponding value, unchanged.
*
* YAFR (smooth) preserves local averages:
*
* The average of the reconstructed intensity surface over any region
* is the same as the average of the piecewise constant surface with
* values over pixel areas equal to the input pixel values (the
* "nearest neighbour" surface), except for a small amount of blur at
* the boundary of the region. More precicely: YAFR (smooth) is a box
* filtered exact area method.
*
* Main weaknesses of YAFR (smooth):
*
* Weakness 1: YAFR (smooth) improves on Catmull-Rom only for images
* with at least a little bit of smoothness.
*
* Weakness 2: Catmull-Rom introduces a lot of haloing. YAFR (smooth)
* is based on Catmull-Rom, and consequently it too introduces a lot
* of haloing.
*
* More details regarding Weakness 1:
*
* If a portion of the image is such that every pixel has immediate
* neighbours in the horizontal and vertical directions which have
* exactly the same pixel value, then YAFR (smooth) boils down to
* Catmull-Rom, and the computation of the correction is a waste.
* Extreme case: If all the pixels are either pure black or pure white
* in some region, as in some text images (more generally, if the
* region is "bichromatic"), then the YAFR (smooth) correction is 0 in
* the interior of the bichromatic region.
*/
static void
gegl_sampler_yafr_class_init (GeglSamplerYafrClass *klass)
{
GeglSamplerClass *sampler_class = GEGL_SAMPLER_CLASS (klass);
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->set_property = set_property;
object_class->get_property = get_property;
sampler_class->get = gegl_sampler_yafr_get;
}
static void
gegl_sampler_yafr_init (GeglSamplerYafr *self)
{
/*
* The computation stencil is 4x4, and sticks out one column to the
* left and one row above the requested integer position:
*/
GEGL_SAMPLER (self)->context_rect = (GeglRectangle){-1,-1,4,4};
GEGL_SAMPLER (self)->interpolate_format = babl_format ("RaGaBaA float");
}
static inline gfloat
catrom_yafr (const gfloat cardinal_one,
const gfloat cardinal_two,
const gfloat cardinal_thr,
const gfloat cardinal_fou,
const gfloat cardinal_uno,
const gfloat cardinal_dos,
const gfloat cardinal_tre,
const gfloat cardinal_qua,
const gfloat left_width_times_up__height_times_rite_width,
const gfloat left_width_times_dow_height_times_rite_width,
const gfloat left_width_times_up__height_times_dow_height,
const gfloat rite_width_times_up__height_times_dow_height,
const gfloat* restrict this_channels_uno_one_bptr)
{
/*
* "sharpening" is a continuous method parameter which is
* proportional to the amount of "diagonal straightening" which the
* nonlinear correction part of the method may add to the underlying
* linear scheme. You may also think of it as a sharpening
* parameter: higher values correspond to more sharpening, and
* negative values lead to strange looking effects.
*
* The default value is sharpening = 29/32 when the scheme being
* "straightened" is Catmull-Rom---as is the case here. This value
* fixes key pixel values near the diagonal boundary between two
* monochrome regions (the diagonal boundary pixel values being set
* to the halfway colour).
*
* If resampling seems to add unwanted texture artifacts, push
* sharpening toward 0. It is not generally not recommended to set
* sharpening to a value larger than 4.
*
* Sharpening is halved because the .5 which has to do with the
* relative coordinates of the evaluation points (which has to do
* with .5*rite_width etc) is folded into the constant to save
* flops. Consequently, the largest recommended value of
* sharpening_over_two is 2=4/2.
*
* In order to simplify interfacing with users, the parameter which
* should be set by the user is normalized so that user_sharpening =
* 1 when sharpening is equal to the recommended value. Consistently
* with the above discussion, values of user_sharpening between 0
* and about 3.625 give good results.
*/
const gfloat user_sharpening = 1.f;
const gfloat sharpening_over_two = user_sharpening * 0.453125f;
/*
* The input pixel values are described by the following stencil.
* Spanish abbreviations are used to label positions from top to
* bottom, English ones to label positions from left to right,:
*
* (ix-1,iy-1) (ix,iy-1) (ix+1,iy-1) (ix+2,iy-1)
* =uno_one =uno_two =uno_thr = uno_fou
*
* (ix-1,iy) (ix,iy) (ix+1,iy) (ix+2,iy)
* =dos_one =dos_two =dos_thr = dos_fou
*
* (ix-1,iy+1) (ix,iy+1) (ix+1,iy+1) (ix+2,iy+1)
* =tre_one =tre_two =tre_thr = tre_fou
*
* (ix-1,iy+2) (ix,iy+2) (ix+1,iy+2) (ix+2,iy+2)
* =qua_one =qua_two =qua_thr = qua_fou
*/
/*
* Load the useful pixel values for the channel under
* consideration. The this_channels_uno_one_bptr pointer is assumed
* to point to uno_one when catrom_yafr is entered.
*/
const gint channels = 4;
const gint pixels_per_buffer_row = 64;
const gfloat uno_one =
this_channels_uno_one_bptr[ 0 ];
const gfloat uno_two =
this_channels_uno_one_bptr[ channels ];
const gfloat uno_thr =
this_channels_uno_one_bptr[ 2 * channels ];
const gfloat uno_fou =
this_channels_uno_one_bptr[ 3 * channels ];
const gfloat dos_one =
this_channels_uno_one_bptr[ pixels_per_buffer_row * channels ];
const gfloat dos_two =
this_channels_uno_one_bptr[ ( 1 + pixels_per_buffer_row ) * channels ];
const gfloat dos_thr =
this_channels_uno_one_bptr[ ( 2 + pixels_per_buffer_row ) * channels ];
const gfloat dos_fou =
this_channels_uno_one_bptr[ ( 3 + pixels_per_buffer_row ) * channels ];
const gfloat tre_one =
this_channels_uno_one_bptr[ 2 * pixels_per_buffer_row * channels ];
const gfloat tre_two =
this_channels_uno_one_bptr[ ( 1 + 2 * pixels_per_buffer_row ) * channels ];
const gfloat tre_thr =
this_channels_uno_one_bptr[ ( 2 + 2 * pixels_per_buffer_row ) * channels ];
const gfloat tre_fou =
this_channels_uno_one_bptr[ ( 3 + 2 * pixels_per_buffer_row ) * channels ];
const gfloat qua_one =
this_channels_uno_one_bptr[ 3 * pixels_per_buffer_row * channels ];
const gfloat qua_two =
this_channels_uno_one_bptr[ ( 1 + 3 * pixels_per_buffer_row ) * channels ];
const gfloat qua_thr =
this_channels_uno_one_bptr[ ( 2 + 3 * pixels_per_buffer_row ) * channels ];
const gfloat qua_fou =
this_channels_uno_one_bptr[ ( 3 + 3 * pixels_per_buffer_row ) * channels ];
/*
* Computation of the YAFR correction:
*
* Basically, if two consecutive pixel value differences have the
* same sign, the smallest one (in absolute value) is taken to be
* the corresponding slope. If they don't have the same sign, the
* corresponding slope is set to 0.
*
* Four such pairs (vertical and horizontal) of slopes need to be
* computed, one pair for each of the pixels which potentially
* overlap the unit area centered at the interpolation point.
*/
/*
* Beginning of the computation of the "up" horizontal slopes:
*/
const gfloat prem__up = dos_two - dos_one;
const gfloat deux__up = dos_thr - dos_two;
const gfloat troi__up = dos_fou - dos_thr;
/*
* "down" horizontal slopes:
*/
const gfloat prem_dow = tre_two - tre_one;
const gfloat deux_dow = tre_thr - tre_two;
const gfloat troi_dow = tre_fou - tre_thr;
/*
* "left" vertical slopes:
*/
const gfloat prem_left = dos_two - uno_two;
const gfloat deux_left = tre_two - dos_two;
const gfloat troi_left = qua_two - tre_two;
/*
* "right" vertical slopes:
*/
const gfloat prem_rite = dos_thr - uno_thr;
const gfloat deux_rite = tre_thr - dos_thr;
const gfloat troi_rite = qua_thr - tre_thr;
/*
* Back to "up":
*/
const gfloat prem__up_squared = prem__up * prem__up;
const gfloat deux__up_squared = deux__up * deux__up;
const gfloat troi__up_squared = troi__up * troi__up;
/*
* Back to "down":
*/
const gfloat prem_dow_squared = prem_dow * prem_dow;
const gfloat deux_dow_squared = deux_dow * deux_dow;
const gfloat troi_dow_squared = troi_dow * troi_dow;
/*
* Back to "left":
*/
const gfloat prem_left_squared = prem_left * prem_left;
const gfloat deux_left_squared = deux_left * deux_left;
const gfloat troi_left_squared = troi_left * troi_left;
/*
* Back to "right":
*/
const gfloat prem_rite_squared = prem_rite * prem_rite;
const gfloat deux_rite_squared = deux_rite * deux_rite;
const gfloat troi_rite_squared = troi_rite * troi_rite;
/*
* "up":
*/
const gfloat prem__up_times_deux__up = prem__up * deux__up;
const gfloat deux__up_times_troi__up = deux__up * troi__up;
/*
* "down":
*/
const gfloat prem_dow_times_deux_dow = prem_dow * deux_dow;
const gfloat deux_dow_times_troi_dow = deux_dow * troi_dow;
/*
* "left":
*/
const gfloat prem_left_times_deux_left = prem_left * deux_left;
const gfloat deux_left_times_troi_left = deux_left * troi_left;
/*
* "right":
*/
const gfloat prem_rite_times_deux_rite = prem_rite * deux_rite;
const gfloat deux_rite_times_troi_rite = deux_rite * troi_rite;
/*
* Branching parts of the computation of the YAFR correction (could
* be unbranched using arithmetic branching and C99 math intrinsics,
* although the compiler may be smart enough to remove the branching
* on its own):
*/
/*
* "up":
*/
const gfloat prem__up_vs_deux__up =
prem__up_squared < deux__up_squared ? prem__up : deux__up;
const gfloat deux__up_vs_troi__up =
deux__up_squared < troi__up_squared ? deux__up : troi__up;
/*
* "down":
*/
const gfloat prem_dow_vs_deux_dow =
prem_dow_squared < deux_dow_squared ? prem_dow : deux_dow;
const gfloat deux_dow_vs_troi_dow =
deux_dow_squared < troi_dow_squared ? deux_dow : troi_dow;
/*
* "left":
*/
const gfloat prem_left_vs_deux_left =
prem_left_squared < deux_left_squared ? prem_left : deux_left;
const gfloat deux_left_vs_troi_left =
deux_left_squared < troi_left_squared ? deux_left : troi_left;
/*
* "right":
*/
const gfloat prem_rite_vs_deux_rite =
prem_rite_squared < deux_rite_squared ? prem_rite : deux_rite;
const gfloat deux_rite_vs_troi_rite =
deux_rite_squared < troi_rite_squared ? deux_rite : troi_rite;
/*
* The YAFR correction computation will resume after the computation
* of the Catmull-Rom baseline.
*/
/*
* Catmull-Rom baseline contribution:
*/
const gfloat catmull_rom =
cardinal_uno *
(
cardinal_one * uno_one
+
cardinal_two * uno_two
+
cardinal_thr * uno_thr
+
cardinal_fou * uno_fou
)
+
cardinal_dos *
(
cardinal_one * dos_one
+
cardinal_two * dos_two
+
cardinal_thr * dos_thr
+
cardinal_fou * dos_fou
)
+
cardinal_tre *
(
cardinal_one * tre_one
+
cardinal_two * tre_two
+
cardinal_thr * tre_thr
+
cardinal_fou * tre_fou
)
+
cardinal_qua *
(
cardinal_one * qua_one
+
cardinal_two * qua_two
+
cardinal_thr * qua_thr
+
cardinal_fou * qua_fou
);
/*
* Computation of the YAFR slopes.
*/
/*
* "up":
*/
const gfloat mx_left__up =
prem__up_times_deux__up < 0.f ? 0.f : prem__up_vs_deux__up;
const gfloat mx_rite__up =
deux__up_times_troi__up < 0.f ? 0.f : deux__up_vs_troi__up;
/*
* "down":
*/
const gfloat mx_left_dow =
prem_dow_times_deux_dow < 0.f ? 0.f : prem_dow_vs_deux_dow;
const gfloat mx_rite_dow =
deux_dow_times_troi_dow < 0.f ? 0.f : deux_dow_vs_troi_dow;
/*
* "left":
*/
const gfloat my_left__up =
prem_left_times_deux_left < 0.f ? 0.f : prem_left_vs_deux_left;
const gfloat my_left_dow =
deux_left_times_troi_left < 0.f ? 0.f : deux_left_vs_troi_left;
/*
* "down":
*/
const gfloat my_rite__up =
prem_rite_times_deux_rite < 0.f ? 0.f : prem_rite_vs_deux_rite;
const gfloat my_rite_dow =
deux_rite_times_troi_rite < 0.f ? 0.f : deux_rite_vs_troi_rite;
/*
* Assemble the unweighted YAFR correction:
*/
const gfloat unweighted_yafr_correction =
left_width_times_up__height_times_rite_width
*
( mx_left__up - mx_rite__up )
+
left_width_times_dow_height_times_rite_width
*
( mx_left_dow - mx_rite_dow )
+
left_width_times_up__height_times_dow_height
*
( my_left__up - my_left_dow )
+
rite_width_times_up__height_times_dow_height
*
( my_rite__up - my_rite_dow );
/*
* Add the Catmull-Rom baseline and the weighted YAFR correction:
*/
const gfloat newval =
sharpening_over_two * unweighted_yafr_correction + catmull_rom;
return newval;
}
static void
gegl_sampler_yafr_get ( GeglSampler *self,
const gdouble x,
const gdouble y,
void *output)
{
/*
* Note: The computation is structured to foster software
* pipelining.
*/
/*
* x is understood to increase from left to right, y, from top to
* bottom. Consequently, ix and iy are the indices of the pixel
* located at or to the left, and at or above. the sampling point.
*
* floor is used to make sure that the transition through 0 is
* smooth. If it is known that negative x and y will never be used,
* cast (which truncates) could be used instead.
*/
const gint ix = floorf (x);
const gint iy = floorf (y);
/*
* Pointer to enlarged input stencil values:
*/
const gfloat* restrict sampler_bptr = gegl_sampler_get_ptr (self, ix, iy);
/*
* Each (channel's) output pixel value is obtained by combining four
* "pieces," each piece corresponding to the set of points which are
* closest to the four pixels closest to the (x,y) position, pixel
* positions which have coordinates and labels as follows:
*
* (ix,iy) (ix+1,iy)
* =left__up =rite__up
*
* <- (x,y) is somewhere in the convex hull
*
* (ix,iy+1) (ix+1,iy+1)
* =left_dow =rite_dow
*/
/*
* rite_width is the width of the overlaps of the unit averaging box
* (which is centered at the position where an interpolated value is
* desired), with the closest unit pixel areas to the right.
*
* left_width is the width of the overlaps of the unit averaging box
* (which is centered at the position where an interpolated value is
* desired), with the closest unit pixel areas to the left.
*/
const gfloat rite_width = x - ix;
const gfloat dow_height = y - iy;
const gfloat left_width = 1.f - rite_width;
const gfloat up__height = 1.f - dow_height;
/*
* .5*rite_width is the x-coordinate of the center of the overlap of
* the averaging box with the left pixel areas, relative to the
* position of the centers of the left pixels.
*
* -.5*left_width is the x-coordinate ... right pixel areas,
* relative to ... the right pixels.
*
* .5*dow_height is the y-coordinate of the center of the overlap
* of the averaging box with the up pixel areas, relative to the
* position of the centers of the up pixels.
*
* -.5*up__height is the y-coordinate ... down pixel areas, relative
* to ... the down pixels.
*/
const gfloat left_width_times_rite_width = left_width * rite_width;
const gfloat up__height_times_dow_height = up__height * dow_height;
const gfloat cardinal_two =
left_width_times_rite_width * ( -1.5f * rite_width + 1.f )
+ left_width;
const gfloat cardinal_dos =
up__height_times_dow_height * ( -1.5f * dow_height + 1.f )
+ up__height;
const gfloat minus_half_left_width_times_rite_width =
-.5f * left_width_times_rite_width;
const gfloat minus_half_up__height_times_dow_height =
-.5f * up__height_times_dow_height;
const gfloat left_width_times_up__height_times_rite_width =
left_width_times_rite_width * up__height;
const gfloat left_width_times_dow_height_times_rite_width =
left_width_times_rite_width * dow_height;
const gfloat left_width_times_up__height_times_dow_height =
up__height_times_dow_height * left_width;
const gfloat rite_width_times_up__height_times_dow_height =
up__height_times_dow_height * rite_width;
const gfloat cardinal_one =
minus_half_left_width_times_rite_width * left_width;
const gfloat cardinal_uno =
minus_half_up__height_times_dow_height * up__height;
const gfloat cardinal_fou =
minus_half_left_width_times_rite_width * rite_width;
const gfloat cardinal_qua =
minus_half_up__height_times_dow_height * dow_height;
const gfloat cardinal_thr =
1.f - ( minus_half_left_width_times_rite_width + cardinal_two );
const gfloat cardinal_tre =
1.f - ( minus_half_up__height_times_dow_height + cardinal_dos );
/*
* The newval array will contain the four (one per channel)
* computed resampled values:
*/
gfloat newval[4];
/*
* Set the tile pointer to the first relevant value. Since the
* pointer initially points to dos_two, we need to rewind it one
* tile row, then go back one additional pixel.
*/
const gint channels = 4;
const gint pixels_per_buffer_row = 64;
sampler_bptr -= ( pixels_per_buffer_row + 1 ) * channels;
newval[0] = catrom_yafr (cardinal_one,
cardinal_two,
cardinal_thr,
cardinal_fou,
cardinal_uno,
cardinal_dos,
cardinal_tre,
cardinal_qua,
left_width_times_up__height_times_rite_width,
left_width_times_dow_height_times_rite_width,
left_width_times_up__height_times_dow_height,
rite_width_times_up__height_times_dow_height,
sampler_bptr++);
newval[1] = catrom_yafr (cardinal_one,
cardinal_two,
cardinal_thr,
cardinal_fou,
cardinal_uno,
cardinal_dos,
cardinal_tre,
cardinal_qua,
left_width_times_up__height_times_rite_width,
left_width_times_dow_height_times_rite_width,
left_width_times_up__height_times_dow_height,
rite_width_times_up__height_times_dow_height,
sampler_bptr++);
newval[2] = catrom_yafr (cardinal_one,
cardinal_two,
cardinal_thr,
cardinal_fou,
cardinal_uno,
cardinal_dos,
cardinal_tre,
cardinal_qua,
left_width_times_up__height_times_rite_width,
left_width_times_dow_height_times_rite_width,
left_width_times_up__height_times_dow_height,
rite_width_times_up__height_times_dow_height,
sampler_bptr++);
newval[3] = catrom_yafr (cardinal_one,
cardinal_two,
cardinal_thr,
cardinal_fou,
cardinal_uno,
cardinal_dos,
cardinal_tre,
cardinal_qua,
left_width_times_up__height_times_rite_width,
left_width_times_dow_height_times_rite_width,
left_width_times_up__height_times_dow_height,
rite_width_times_up__height_times_dow_height,
sampler_bptr);
/*
* Ship out newval:
*/
babl_process (babl_fish (self->interpolate_format, self->format),
newval,
output,
1);
}
static void
set_property ( GObject *gobject,
guint property_id,
const GValue *value,
GParamSpec *pspec)
{
G_OBJECT_WARN_INVALID_PROPERTY_ID (gobject, property_id, pspec);
}
static void
get_property (GObject *gobject,
guint property_id,
GValue *value,
GParamSpec *pspec)
{
G_OBJECT_WARN_INVALID_PROPERTY_ID (gobject, property_id, pspec);
}