libvips/man/im_list_add.3

230 lines
6.5 KiB
Groff

.TH IM_LIST_ADD 3 "2 May 1991"
.SH NAME
im_list_add, im_list_len, im_list_pos, im_list_member, im_list_append,
im_list_remove,
im_list_eq, im_list_map, im_list_map_rev, im_list_fold, im_list_fix,
im_list_free, im_list_insert \- linked list functions
.SH SYNOPSIS
#include <vips/vips.h>
.br
#include <vips/list.h>
typedef struct list_type {
.br
struct list_type *next;
.br
void *this;
.br
} List;
#define hd(L) ((L)->this)
.br
#define tl(L) ((L)->next)
typedef void *(*im_list_map_fn)( void *, void *, void * );
.br
typedef void (*im_list_free_fn)( void *, void *, void * );
.br
typedef void *(*im_list_fold_fn)( void *, void *,
.br
void *, void * );
int im_list_len( List *l );
.br
int im_list_pos( List *l, void *t );
.br
int im_list_member( List *l, void *t );
.br
void *im_list_index( List *l, int n );
.br
int im_list_add( List **base, void *new );
.br
int im_list_insert( List **base, void *new, void *old );
.br
int im_list_append( List **base, void *new );
.br
int im_list_remove( List **base, void *t );
void *im_list_eq( void *a, void *b );
.br
void *im_list_map( List *l,
.br
im_list_map_fn fn, void *a, void *b );
.br
void *im_list_map_rev( List *l,
.br
im_list_map_fn fn, void *a, void *b );
.br
void *im_list_fold( List *l,
.br
void *start, im_list_fold_fn fn, void *a, void *b );
.br
void im_list_fix( List **base,
.br
im_list_map_fn fn, void *a, void *b );
.br
void im_list_free( List **base,
.br
im_list_free_fn fn, void *a, void *b );
.SH DESCRIPTION
Manipulate linked lists in various ways. These functions are heavily used by
the VIPS IO system; use them yourself if you like. VIPS lists store lists of
void * pointers - use casts if you want to store some other type. Note that
if sizeof( your object ) != sizeof( void * ), you will be in trouble!
All are based on the List type (see above). An empty list is a NULL pointer, a
one element list is a pointer to a List struct, whose this field contains a
pointer to the object in the list and whose next field is NULL. Macros hd(3)
and tl(3) (head and tail) return this and next respectively.
im_list_len(3) returns the number of elements in list l. im_list_pos(3) searches
list l for stored object t, returning an index. The first list element has
index zero. im_list_pos(3) returns -1 for not present. im_list_index(3) returns
the item at position n in the list, or NULL for index out of range.
im_list_member(3) returns non-zero if the list contains the element.
im_list_map(3) applies a void * valued function to every element in a list,
running from beginning to end. If the function returns NULL, im_list_map
continues with the next element. If the function returns non-NULL,
im_list_map(3) abandons the map and returns immediately, returning the value
the user function returned. If the list is empty, im_list_map(3) returns NULL.
The two extra arguments a and b are carried around for you by VIPS and fed
into each call of the function. They are useful for communicating context
information.
You can use im_list_map to implement many kinds of list search/apply operation.
VIPS supplies the function im_list_eq(3) which tests two void * pointers for
equality, returning the pointer if they match, and returning NULL otherwise.
Example: search a list for an object
im_list_map( list,
.br
(im_list_map_fn) im_list_eq, object, NULL );
This could also be written as
List *p;
for( p = list; p; p = tl( p ) )
.br
if( object == hd( p ) )
.br
break;
I prefer the first.
im_list_map_rev(3) behaves exactly as im_list_map(3), but applies the function
running from te end to the beginning of the list. It is much slower than
im_list_map(3) and should be used only in emergencies.
im_list_fold(3) folds up a list with a dyadic function. If a list contains
[1,2], return fn( 2, fn( 1, start, a, b ), a, b ). If the list is empty,
return start.
The two extra arguments a and b are carried around for you by VIPS and fed
into each call of the function. They are useful for communicating context
information.
Example: find a pointer to the largest element in a list of ints (assume
sizeof(int) <= sizeof(void *))
max_pair( int *new, int *old )
.br
{
.br
if( !old || *new > *old )
.br
return( new );
.br
else
.br
return( old );
.br
}
largest = im_list_fold( list,
.br
NULL, (im_list_map_fn) max_pair, NULL, NULL );
im_list_add(3) adds a new element to the head of a list. Since the head of the
list will move, you must pass in a *pointer* to your pointer to your old head.
Example: make a list of the numbers 9-0 (assume sizeof(int) <= sizeof(void *))
int i;
.br
List *nlist = NULL;
for( i = 0; i < 10; i++ )
.br
im_list_add( &nlist, (void *) i );
im_list_insert(3) adds a new element to a list, placing it just before the
indicated old element. If the old element is not found, im_list_insert(3)
returns an error.
im_list_append(3) appends a new element to the end of a list. This is much
slower than im_list_add(3), and should be avoided if possible.
im_list_remove(3) removes the specified element from the list. Since the head
of the list may move, you must pass in a *pointer* to your pointer to your
old head.
im_list_fix(3) finds the fixed-point of a list-altering function. It repeatedly
maps a function over the list until the function returns NULL. Note that,
since the list may be changing, you must pass in a *pointer* to the pointer
you store the list in.
The two extra arguments a and b are carried around for you by VIPS and fed
into each call of the function. They are useful for communicating context
information.
Example: remove all elements less than x from a list of numbers (assume
sizeof(int) <= sizeof(void *))
int *
.br
test_ele( int *n, List **base, int x )
.br
{
.br
if( *n < x ) {
.br
im_list_remove( base, n );
.br
return( base );
.br
}
.br
else
.br
return( NULL );
.br
}
im_list_fix( &nlist,
.br
(im_list_map_fn) test_ele, &nlist, x );
im_list_free(3) frees the list, applying a user free function to every element
as it is freed. You may pass NULL instead of a pointer to a function, in which
case im_list_free(3) will just free the memory used by the list nodes.
The two extra arguments a and b are carried around for you by VIPS and fed
into each call of the function. They are useful for communicating context
information.
.SH RETURN VALUE
The functions returns a 0 or a pointer on sucess, and non-zero or NULL on
failure.
.SH SEE\ ALSO
im_rect_intersectrect(3), etc.
.SH COPYRIGHT
.br
National Gallery, 1992
.SH AUTHOR
J. Cupitt