libvips/python/test_arithmetic.py
2014-09-15 13:58:31 +01:00

363 lines
12 KiB
Python
Executable File

#!/usr/bin/python
import unittest
import gc
#import logging
#logging.basicConfig(level = logging.DEBUG)
from gi.repository import Vips
from vips8 import vips
unsigned_formats = [Vips.BandFormat.UCHAR,
Vips.BandFormat.USHORT,
Vips.BandFormat.UINT]
signed_formats = [Vips.BandFormat.CHAR,
Vips.BandFormat.SHORT,
Vips.BandFormat.INT]
float_formats = [Vips.BandFormat.FLOAT,
Vips.BandFormat.DOUBLE]
complex_formats = [Vips.BandFormat.COMPLEX,
Vips.BandFormat.DPCOMPLEX]
int_formats = unsigned_formats + signed_formats
noncomplex_formats = int_formats + float_formats
all_formats = int_formats + float_formats + complex_formats
# an expanding zip ... if either of the args is not a list, duplicate it down
# the other
def zip_expand(x, y):
if isinstance(x, list) and isinstance(y, list):
return zip(x, y)
elif isinstance(x, list):
return [[i, y] for i in x]
elif isinstance(y, list):
return [[x, j] for j in y]
else:
return [[x, y]]
# run a 1-ary function on a thing -- loop over elements if the
# thing is a list
def run_fn(fn, x):
if isinstance(x, list):
return [fn(i) for i in x]
else:
return fn(x)
# run a 2-ary function on two things -- loop over elements pairwise if the
# things are lists
def run_fn2(fn, x, y):
if isinstance(x, Vips.Image) or isinstance(y, Vips.Image):
return fn(x, y)
elif isinstance(x, list) or isinstance(y, list):
return [fn(i, j) for i, j in zip_expand(x, y)]
else:
return fn(x, y)
class TestArithmetic(unittest.TestCase):
# test a pair of things which can be lists for approx. equality
def assertAlmostEqualObjects(self, a, b, msg = ''):
for x, y in zip_expand(a, b):
#print 'assertAlmostEqual %s = %s' % (x, y)
self.assertAlmostEqual(x, y, places = 4, msg = msg)
# run a function on an image and on a single pixel, the results
# should match
def run_cmp(self, message, im, x, y, fn):
a = im.getpoint(x, y)
v1 = fn(a)
im2 = fn(im)
v2 = im2.getpoint(x, y)
self.assertAlmostEqualObjects(v1, v2, msg = message)
# run a function on (image, constant), and on (constant, image).
# 50,50 and 10,10 should have different values on the test image
def run_testconst(self, message, fn, im, c):
self.run_cmp(message, im, 50, 50, lambda x: run_fn2(fn, x, c))
self.run_cmp(message, im, 50, 50, lambda x: run_fn2(fn, c, x))
self.run_cmp(message, im, 10, 10, lambda x: run_fn2(fn, x, c))
self.run_cmp(message, im, 10, 10, lambda x: run_fn2(fn, c, x))
def run_arith_const(self, fn, fmt = all_formats):
[self.run_testconst(fn.func_name + ' scalar', fn, x.cast(y), 2)
for x in self.all_images for y in fmt]
[self.run_testconst(fn.func_name + ' vector', fn, self.colour.cast(y),
[1, 2, 3])
for y in fmt]
# run a function on a pair of images and on a pair of pixels, the results
# should match
def run_cmp2(self, message, left, right, x, y, fn):
a = left.getpoint(x, y)
b = right.getpoint(x, y)
v1 = fn(a, b)
after = fn(left, right)
v2 = after.getpoint(x, y)
self.assertAlmostEqualObjects(v1, v2, msg = message)
# run a function on a pair of images
# 50,50 and 10,10 should have different values on the test image
def run_test2(self, message, left, right, fn):
self.run_cmp2(message, left, right, 50, 50,
lambda x, y: run_fn2(fn, x, y))
self.run_cmp2(message, left, right, 10, 10,
lambda x, y: run_fn2(fn, x, y))
def run_arith(self, fn, fmt = all_formats):
[self.run_test2(fn.func_name + ' image', x.cast(y), x.cast(z), fn)
for x in self.all_images for y in fmt for z in fmt]
def setUp(self):
im = Vips.Image.mask_ideal(100, 100, 0.5)
self.colour = im * [1, 2, 3] + [2, 3, 4]
self.mono = self.colour.extract_band(1)
self.all_images = [self.mono, self.colour]
# test all operator overloads we define
def test_add(self):
def add(x, y):
return x + y
self.run_arith_const(add)
self.run_arith(add)
def test_sub(self):
def sub(x, y):
return x - y
self.run_arith_const(sub)
self.run_arith(sub)
def test_mul(self):
def mul(x, y):
return x * y
self.run_arith_const(mul)
self.run_arith(mul)
def test_div(self):
def div(x, y):
return x / y
# (const / image) needs (image ** -1), which won't work for complex
self.run_arith_const(div, fmt = noncomplex_formats)
self.run_arith(div)
def test_floordiv(self):
def my_floordiv(x, y):
return x // y
# (const // image) needs (image ** -1), which won't work for complex
self.run_arith_const(my_floordiv, fmt = noncomplex_formats)
self.run_arith(my_floordiv, fmt = noncomplex_formats)
def test_pow(self):
def my_pow(x, y):
return x ** y
# (image ** x) won't work for complex images ... just test non-complex
self.run_arith_const(my_pow, fmt = noncomplex_formats)
self.run_arith(my_pow, fmt = noncomplex_formats)
def test_and(self):
def my_and(x, y):
# python doesn't allow bools on float
if isinstance(x, float):
x = int(x)
if isinstance(y, float):
y = int(y)
return x & y
self.run_arith_const(my_and, fmt = noncomplex_formats)
self.run_arith(my_and, fmt = noncomplex_formats)
def test_or(self):
def my_or(x, y):
# python doesn't allow bools on float
if isinstance(x, float):
x = int(x)
if isinstance(y, float):
y = int(y)
return x | y
self.run_arith_const(my_or, fmt = noncomplex_formats)
self.run_arith(my_or, fmt = noncomplex_formats)
def test_xor(self):
def my_xor(x, y):
# python doesn't allow bools on float
if isinstance(x, float):
x = int(x)
if isinstance(y, float):
y = int(y)
return x ^ y
self.run_arith_const(my_xor, fmt = noncomplex_formats)
self.run_arith(my_xor, fmt = noncomplex_formats)
# run a function on an image,
# 50,50 and 10,10 should have different values on the test image
def run_testunary(self, message, im, fn):
self.run_cmp(message, im, 50, 50, lambda x: run_fn(fn, x))
self.run_cmp(message, im, 10, 10, lambda x: run_fn(fn, x))
def run_unary(self, images, fn, fmt = all_formats):
[self.run_testunary(fn.func_name + ' image', x.cast(y), fn)
for x in images for y in fmt]
def test_abs(self):
def my_abs(x):
return abs(x)
im = -self.colour
self.run_unary([im], my_abs)
def test_lshift(self):
def my_lshift(x):
# python doesn't allow float << int
if isinstance(x, float):
x = int(x)
return x << 2
# we don't support constant << image, treat as a unary
self.run_unary(self.all_images, my_lshift, fmt = noncomplex_formats)
def test_rshift(self):
def my_rshift(x):
# python doesn't allow float >> int
if isinstance(x, float):
x = int(x)
return x >> 2
# we don't support constant >> image, treat as a unary
self.run_unary(self.all_images, my_rshift, fmt = noncomplex_formats)
def test_mod(self):
def my_mod(x):
return x % 2
# we don't support constant % image, treat as a unary
self.run_unary(self.all_images, my_mod, fmt = noncomplex_formats)
def test_pos(self):
def my_pos(x):
return +x
self.run_unary(self.all_images, my_pos)
def test_neg(self):
def my_neg(x):
return -x
self.run_unary(self.all_images, my_neg)
def test_invert(self):
def my_invert(x):
if isinstance(x, float):
x = int(x)
return ~x & 0xff
# ~image is trimmed to image max so it's hard to test for all formats
# just test uchar
self.run_unary(self.all_images, my_invert,
fmt = [Vips.BandFormat.UCHAR])
# test the rest of VipsArithmetic
def test_avg(self):
im = Vips.Image.black(50, 100)
test = im.insert(im + 100, 50, 0, expand = True)
for fmt in all_formats:
self.assertAlmostEqual(test.cast(fmt).avg(), 50)
def test_deviate(self):
im = Vips.Image.black(50, 100)
test = im.insert(im + 100, 50, 0, expand = True)
for fmt in noncomplex_formats:
self.assertAlmostEqual(test.cast(fmt).deviate(), 50, places = 2)
def test_polar(self):
im = Vips.Image.black(100, 100) + 100
im = im.complexform(im)
im = im.polar()
self.assertAlmostEqual(im.real().avg(), 100 * 2 ** 0.5)
self.assertAlmostEqual(im.imag().avg(), 45)
def test_rect(self):
im = Vips.Image.black(100, 100)
im = (im + 100 * 2 ** 0.5).complexform(im + 45)
im = im.rect()
self.assertAlmostEqual(im.real().avg(), 100)
self.assertAlmostEqual(im.imag().avg(), 100)
def test_conjugate(self):
im = Vips.Image.black(100, 100) + 100
im = im.complexform(im)
im = im.conj()
self.assertAlmostEqual(im.real().avg(), 100)
self.assertAlmostEqual(im.imag().avg(), -100)
def test_histfind(self):
im = Vips.Image.black(50, 100)
test = im.insert(im + 10, 50, 0, expand = True)
for fmt in all_formats:
hist = test.cast(fmt).hist_find()
self.assertAlmostEqualObjects(hist.getpoint(0,0), [5000])
self.assertAlmostEqualObjects(hist.getpoint(10,0), [5000])
self.assertAlmostEqualObjects(hist.getpoint(5,0), [0])
test = test * [1, 2, 3]
for fmt in all_formats:
hist = test.cast(fmt).hist_find(band = 0)
self.assertAlmostEqualObjects(hist.getpoint(0,0), [5000])
self.assertAlmostEqualObjects(hist.getpoint(10,0), [5000])
self.assertAlmostEqualObjects(hist.getpoint(5,0), [0])
hist = test.cast(fmt).hist_find(band = 1)
self.assertAlmostEqualObjects(hist.getpoint(0,0), [5000])
self.assertAlmostEqualObjects(hist.getpoint(20,0), [5000])
self.assertAlmostEqualObjects(hist.getpoint(5,0), [0])
def test_histfind_indexed(self):
im = Vips.Image.black(50, 100)
test = im.insert(im + 10, 50, 0, expand = True)
index = test / 10
for x in noncomplex_formats:
for y in [Vips.BandFormat.UCHAR, Vips.BandFormat.USHORT]:
a = test.cast(x)
b = index.cast(y)
hist = a.hist_find_indexed(b)
self.assertAlmostEqualObjects(hist.getpoint(0,0), [0])
self.assertAlmostEqualObjects(hist.getpoint(1,0), [50000])
def test_histfind_ndim(self):
im = Vips.Image.black(100, 100) + [1, 2, 3]
for fmt in noncomplex_formats:
hist = im.cast(fmt).hist_find_ndim()
self.assertAlmostEqualObjects(hist.getpoint(0,0)[0], 10000)
self.assertAlmostEqualObjects(hist.getpoint(5,5)[5], 0)
hist = im.cast(fmt).hist_find_ndim(bins = 1)
self.assertAlmostEqualObjects(hist.getpoint(0,0)[0], 10000)
self.assertEqual(hist.width, 1)
self.assertEqual(hist.height, 1)
self.assertEqual(hist.bands, 1)
if __name__ == '__main__':
unittest.main()