libvips/libsrc/arithmetic/im_lintra.c

384 lines
9.1 KiB
C

/* @(#) Pass an image through a linear transform - ie. out = in*a + b. Output
* @(#) is always float for integer input, double for double input, complex for
* @(#) complex input and double complex for double complex input.
* @(#)
* @(#) int
* @(#) im_lintra( a, in, b, out )
* @(#) IMAGE *in, *out;
* @(#) double a, b;
* @(#)
* @(#) Returns 0 on success and -1 on error
* @(#)
*
* Copyright: 1990, N. Dessipris, based on im_powtra()
* Author: Nicos Dessipris
* Written on: 02/05/1990
* Modified on:
* 23/4/93 JC
* - adapted to work with partial images
* 1/7/93 JC
* - adapted for partial v2
* 7/10/94 JC
* - new IM_NEW()
* - more typedefs
* 9/2/95 JC
* - adapted for im_wrap...
* - operations on complex images now just transform the real channel
* 29/9/95 JC
* - complex was broken
* 15/4/97 JC
* - return(0) missing from generate, arrgh!
* 1/7/98 JC
* - im_lintra_vec added
* 3/8/02 JC
* - fall back to im_copy() for a == 1, b == 0
* 10/10/02 JC
* - auug, failing to multiply imag for complex! (thanks matt)
* 10/12/02 JC
* - removed im_copy() fallback ... meant that output format could change
* with value :-( very confusing
* 30/6/04
* - added 1 band image * n band vector case
* 8/12/06
* - add liboil support
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <vips/vips.h>
#include <vips/internal.h>
#ifdef HAVE_LIBOIL
#include <liboil/liboil.h>
#endif /*HAVE_LIBOIL*/
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* Struct we need for im_generate().
*/
typedef struct {
int n; /* Number of bands of constants */
double *a, *b;
} LintraInfo;
/* Define what we do for each band element type. Non-complex input, any
* output.
*/
#define LOOP(IN, OUT) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < sz; x++ ) \
q[x] = a * (OUT) p[x] + b; \
}
/* Complex input, complex output.
*/
#define LOOPCMPLX(IN, OUT) {\
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < sz; x++ ) { \
q[0] = a * p[0] + b; \
q[1] = a * p[1]; \
q += 2; \
p += 2; \
} \
}
#ifdef HAVE_LIBOIL
/* Process granularity.
*/
#define CHUNKS (1000)
/* d[] = s[] * b + c, with liboil
*/
static void
lintra_f32( float *d, float *s, int n, float b, float c )
{
float buf[CHUNKS];
int i;
for( i = 0; i < n; i += CHUNKS ) {
oil_scalarmultiply_f32_ns( buf, s,
&b, IM_MIN( CHUNKS, n - i ) );
oil_scalaradd_f32_ns( d, buf,
&c, IM_MIN( CHUNKS, n - i ) );
s += CHUNKS;
d += CHUNKS;
}
}
#endif /*HAVE_LIBOIL*/
/* Lintra a buffer, 1 set of scale/offset.
*/
static int
lintra1_gen( PEL *in, PEL *out, int width, IMAGE *im, LintraInfo *inf )
{
double a = inf->a[0];
double b = inf->b[0];
int sz = width * im->Bands;
int x;
/* Lintra all input types.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOP( unsigned char, float ); break;
case IM_BANDFMT_CHAR: LOOP( signed char, float ); break;
case IM_BANDFMT_USHORT: LOOP( unsigned short, float ); break;
case IM_BANDFMT_SHORT: LOOP( signed short, float ); break;
case IM_BANDFMT_UINT: LOOP( unsigned int, float ); break;
case IM_BANDFMT_INT: LOOP( signed int, float ); break;
case IM_BANDFMT_FLOAT:
#ifdef HAVE_LIBOIL
lintra_f32( (float *) out, (float *) in, sz, a, b );
#else /*!HAVE_LIBOIL*/
LOOP( float, float );
#endif /*HAVE_LIBOIL*/
break;
case IM_BANDFMT_DOUBLE: LOOP( double, double ); break;
case IM_BANDFMT_COMPLEX: LOOPCMPLX( float, float ); break;
case IM_BANDFMT_DPCOMPLEX: LOOPCMPLX( double, double ); break;
default:
assert( 0 );
}
return( 0 );
}
/* Define what we do for each band element type. Non-complex input, any
* output.
*/
#define LOOPN(IN, OUT)\
{\
IN *p = (IN *) in;\
OUT *q = (OUT *) out;\
\
for( i = 0, x = 0; x < width; x++ )\
for( k = 0; k < nb; k++, i++ )\
q[i] = a[k] * (OUT) p[i] + b[k];\
}
/* Complex input, complex output.
*/
#define LOOPCMPLXN(IN, OUT)\
{\
IN *p = (IN *) in;\
OUT *q = (OUT *) out;\
\
for( x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++ ) {\
q[0] = a[k] * p[0] + b[k];\
q[1] = a[k] * p[1];\
q += 2;\
p += 2;\
}\
}
/* Lintra a buffer, n set of scale/offset.
*/
static int
lintran_gen( PEL *in, PEL *out, int width, IMAGE *im, LintraInfo *inf )
{
double *a = inf->a;
double *b = inf->b;
int nb = im->Bands;
int i, x, k;
/* Lintra all input types.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOPN( unsigned char, float ); break;
case IM_BANDFMT_CHAR: LOOPN( signed char, float ); break;
case IM_BANDFMT_USHORT: LOOPN( unsigned short, float ); break;
case IM_BANDFMT_SHORT: LOOPN( signed short, float ); break;
case IM_BANDFMT_UINT: LOOPN( unsigned int, float ); break;
case IM_BANDFMT_INT: LOOPN( signed int, float ); break;
case IM_BANDFMT_FLOAT: LOOPN( float, float ); break;
case IM_BANDFMT_DOUBLE: LOOPN( double, double ); break;
case IM_BANDFMT_COMPLEX: LOOPCMPLXN( float, float ); break;
case IM_BANDFMT_DPCOMPLEX: LOOPCMPLXN( double, double ); break;
default:
assert( 0 );
}
return( 0 );
}
/* 1 band image, n band vector.
*/
#define LOOPNV(IN, OUT) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( i = 0, x = 0; x < width; x++ ) { \
OUT v = p[x]; \
\
for( k = 0; k < nb; k++, i++ ) \
q[i] = a[k] * v + b[k]; \
} \
}
#define LOOPCMPLXNV(IN, OUT) { \
IN *p = (IN *) in; \
OUT *q = (OUT *) out; \
\
for( x = 0; x < width; x++ ) { \
OUT p0 = p[0]; \
OUT p1 = p[1]; \
\
for( k = 0; k < nb; k++ ) { \
q[0] = a[k] * p0 + b[k]; \
q[1] = a[k] * p1; \
q += 2; \
} \
\
p += 2; \
} \
}
static int
lintranv_gen( PEL *in, PEL *out, int width, IMAGE *im, LintraInfo *inf )
{
double *a = inf->a;
double *b = inf->b;
int nb = inf->n;
int i, x, k;
/* Lintra all input types.
*/
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR: LOOPNV( unsigned char, float ); break;
case IM_BANDFMT_CHAR: LOOPNV( signed char, float ); break;
case IM_BANDFMT_USHORT: LOOPNV( unsigned short, float ); break;
case IM_BANDFMT_SHORT: LOOPNV( signed short, float ); break;
case IM_BANDFMT_UINT: LOOPNV( unsigned int, float ); break;
case IM_BANDFMT_INT: LOOPNV( signed int, float ); break;
case IM_BANDFMT_FLOAT: LOOPNV( float, float ); break;
case IM_BANDFMT_DOUBLE: LOOPNV( double, double ); break;
case IM_BANDFMT_COMPLEX: LOOPCMPLXNV( float, float ); break;
case IM_BANDFMT_DPCOMPLEX: LOOPCMPLXNV( double, double ); break;
default:
assert( 0 );
}
return( 0 );
}
/* Linear transform n bands.
*/
int
im_lintra_vec( int n, double *a, IMAGE *in, double *b, IMAGE *out )
{
LintraInfo *inf;
int i;
/* Check args.
*/
if( in->Coding != IM_CODING_NONE ) {
im_error( "im_lintra_vec", "%s", _( "not uncoded" ) );
return( -1 );
}
/* If n and bands differ, one of them must be one (and we multiplex
* the other).
*/
if( n != in->Bands && (n != 1 && in->Bands != 1) ) {
im_error( "im_lintra_vec",
_( "not 1 or %d elements in vector" ), in->Bands );
return( -1 );
}
/* Prepare output header.
*/
if( im_cp_desc( out, in ) )
return( -1 );
if( im_isint( in ) ) {
out->Bbits = IM_BBITS_FLOAT;
out->BandFmt = IM_BANDFMT_FLOAT;
}
if( in->Bands == 1 )
out->Bands = n;
/* Make space for a little buffer.
*/
if( !(inf = IM_NEW( out, LintraInfo )) ||
!(inf->a = IM_ARRAY( out, n, double )) ||
!(inf->b = IM_ARRAY( out, n, double )) )
return( -1 );
inf->n = n;
for( i = 0; i < n; i++ ) {
inf->a[i] = a[i];
inf->b[i] = b[i];
}
/* Generate!
*/
if( n == 1 ) {
if( im_wrapone( in, out,
(im_wrapone_fn) lintra1_gen, in, inf ) )
return( -1 );
}
else if( in->Bands == 1 ) {
if( im_wrapone( in, out,
(im_wrapone_fn) lintranv_gen, in, inf ) )
return( -1 );
}
else {
if( im_wrapone( in, out,
(im_wrapone_fn) lintran_gen, in, inf ) )
return( -1 );
}
return( 0 );
}
/* Linear transform.
*/
int
im_lintra( double a, IMAGE *in, double b, IMAGE *out )
{
return( im_lintra_vec( 1, &a, in, &b, out ) );
}