libvips/libsrc/mosaicing/yafrsmooth.cpp
2008-11-17 22:56:16 +00:00

760 lines
20 KiB
C++

/* yafrsmooth interpolator
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
* 2008 (c) Nicolas Robidoux (developer of Yet Another Fast
* Resampler).
*
* Acknowledgement: N. Robidoux's research on YAFRSMOOTH funded in part by
* an NSERC (National Science and Engineering Research Council of
* Canada) Discovery Grant.
*/
/* Hacked for vips by J. Cupitt, 12/11/08.
*
* Bicubic component replaced with the one from bicubbic.cpp.
*/
/*
* YAFRSMOOTH = Yet Another Fast Resampler
*
* Yet Another Fast Resampler is a nonlinear resampler which consists
* of a linear scheme (in this version, Catmull-Rom) plus a nonlinear
* sharpening correction the purpose of which is the straightening of
* diagonal interfaces between flat colour areas.
*
* Key properties:
*
* YAFRSMOOTH (smooth) is interpolatory:
*
* If asked for the value at the center of an input pixel, it will
* return the corresponding value, unchanged.
*
* YAFRSMOOTH (smooth) preserves local averages:
*
* The average of the reconstructed intensity surface over any region
* is the same as the average of the piecewise constant surface with
* values over pixel areas equal to the input pixel values (the
* "nearest neighbour" surface), except for a small amount of blur at
* the boundary of the region. More precicely: YAFRSMOOTH (smooth) is a box
* filtered exact area method.
*
* Main weaknesses of YAFRSMOOTH (smooth):
*
* Weakness 1: YAFRSMOOTH (smooth) improves on Catmull-Rom only for images
* with at least a little bit of smoothness.
*
* Weakness 2: Catmull-Rom introduces a lot of haloing. YAFRSMOOTH (smooth)
* is based on Catmull-Rom, and consequently it too introduces a lot
* of haloing.
*
* More details regarding Weakness 1:
*
* If a portion of the image is such that every pixel has immediate
* neighbours in the horizontal and vertical directions which have
* exactly the same pixel value, then YAFRSMOOTH (smooth) boils down to
* Catmull-Rom, and the computation of the correction is a waste.
* Extreme case: If all the pixels are either pure black or pure white
* in some region, as in some text images (more generally, if the
* region is "bichromatic"), then the YAFRSMOOTH (smooth) correction is 0 in
* the interior of the bichromatic region.
*/
/*
#define DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/internal.h>
#include "templates.h"
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* "fast" floor() ... on my laptop, anyway.
*/
#define FLOOR( V ) ((V) >= 0 ? (int)(V) : (int)((V) - 1))
#ifndef restrict
#ifdef __restrict
#define restrict __restrict
#else
#ifdef __restrict__
#define restrict __restrict__
#else
#define restrict
#endif
#endif
#endif
/* Scale sharpening by this to normalise.
*/
#define SMOOTH_SHARPENING_SCALE (0.453125f)
static VipsInterpolateClass *vips_interpolate_yafrsmooth_parent_class = NULL;
/* T is the type of pixels we are computing, D is a type large enough to hold
* (Ta - Tb) ** 2.
*/
/* The 16 values for this interpolation, four constants for this
* interpolation position.
*/
template <typename T, typename D> static float inline
yafrsmooth(
const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
const double *c )
{
/*
* Computation of the YAFRSMOOTH correction:
*
* Basically, if two consecutive pixel value differences have the
* same sign, the smallest one (in absolute value) is taken to be
* the corresponding slope. If they don't have the same sign, the
* corresponding slope is set to 0.
*
* Four such pairs (vertical and horizontal) of slopes need to be
* computed, one pair for each of the pixels which potentially
* overlap the unit area centered at the interpolation point.
*/
/*
* Beginning of the computation of the "up" horizontal slopes:
*/
const D prem__up = dos_two - dos_one;
const D deux__up = dos_thr - dos_two;
const D troi__up = dos_fou - dos_thr;
/*
* "down" horizontal slopes:
*/
const D prem_dow = tre_two - tre_one;
const D deux_dow = tre_thr - tre_two;
const D troi_dow = tre_fou - tre_thr;
/*
* "left" vertical slopes:
*/
const D prem_left = dos_two - uno_two;
const D deux_left = tre_two - dos_two;
const D troi_left = qua_two - tre_two;
/*
* "right" vertical slopes:
*/
const D prem_rite = dos_thr - uno_thr;
const D deux_rite = tre_thr - dos_thr;
const D troi_rite = qua_thr - tre_thr;
/*
* Back to "up":
*/
const D prem__up_squared = prem__up * prem__up;
const D deux__up_squared = deux__up * deux__up;
const D troi__up_squared = troi__up * troi__up;
/*
* Back to "down":
*/
const D prem_dow_squared = prem_dow * prem_dow;
const D deux_dow_squared = deux_dow * deux_dow;
const D troi_dow_squared = troi_dow * troi_dow;
/*
* Back to "left":
*/
const D prem_left_squared = prem_left * prem_left;
const D deux_left_squared = deux_left * deux_left;
const D troi_left_squared = troi_left * troi_left;
/*
* Back to "right":
*/
const D prem_rite_squared = prem_rite * prem_rite;
const D deux_rite_squared = deux_rite * deux_rite;
const D troi_rite_squared = troi_rite * troi_rite;
/*
* "up":
*/
const D prem__up_times_deux__up = prem__up * deux__up;
const D deux__up_times_troi__up = deux__up * troi__up;
/*
* "down":
*/
const D prem_dow_times_deux_dow = prem_dow * deux_dow;
const D deux_dow_times_troi_dow = deux_dow * troi_dow;
/*
* "left":
*/
const D prem_left_times_deux_left = prem_left * deux_left;
const D deux_left_times_troi_left = deux_left * troi_left;
/*
* "right":
*/
const D prem_rite_times_deux_rite = prem_rite * deux_rite;
const D deux_rite_times_troi_rite = deux_rite * troi_rite;
/*
* Branching parts of the computation of the YAFRSMOOTH correction
* (could be unbranched using arithmetic branching and C99 math
* intrinsics, although the compiler may be smart enough to remove
* the branching on its own):
*/
/*
* "up":
*/
const D prem__up_vs_deux__up =
prem__up_squared < deux__up_squared ? prem__up : deux__up;
const D deux__up_vs_troi__up =
deux__up_squared < troi__up_squared ? deux__up : troi__up;
/*
* "down":
*/
const D prem_dow_vs_deux_dow =
prem_dow_squared < deux_dow_squared ? prem_dow : deux_dow;
const D deux_dow_vs_troi_dow =
deux_dow_squared < troi_dow_squared ? deux_dow : troi_dow;
/*
* "left":
*/
const D prem_left_vs_deux_left =
prem_left_squared < deux_left_squared ? prem_left : deux_left;
const D deux_left_vs_troi_left =
deux_left_squared < troi_left_squared ? deux_left : troi_left;
/*
* "right":
*/
const D prem_rite_vs_deux_rite =
prem_rite_squared < deux_rite_squared ? prem_rite : deux_rite;
const D deux_rite_vs_troi_rite =
deux_rite_squared < troi_rite_squared ? deux_rite : troi_rite;
/*
* Computation of the YAFRSMOOTH slopes.
*/
/*
* "up":
*/
const D mx_left__up =
prem__up_times_deux__up < 0.f ? 0.f : prem__up_vs_deux__up;
const D mx_rite__up =
deux__up_times_troi__up < 0.f ? 0.f : deux__up_vs_troi__up;
/*
* "down":
*/
const D mx_left_dow =
prem_dow_times_deux_dow < 0.f ? 0.f : prem_dow_vs_deux_dow;
const D mx_rite_dow =
deux_dow_times_troi_dow < 0.f ? 0.f : deux_dow_vs_troi_dow;
/*
* "left":
*/
const D my_left__up =
prem_left_times_deux_left < 0.f ? 0.f : prem_left_vs_deux_left;
const D my_left_dow =
deux_left_times_troi_left < 0.f ? 0.f : deux_left_vs_troi_left;
/*
* "right":
*/
const D my_rite__up =
prem_rite_times_deux_rite < 0.f ? 0.f : prem_rite_vs_deux_rite;
const D my_rite_dow =
deux_rite_times_troi_rite < 0.f ? 0.f : deux_rite_vs_troi_rite;
/*
* Assemble the unweighted YAFRSMOOTH correction:
*/
const float yafr =
c[0] * (mx_left__up - mx_rite__up) +
c[1] * (mx_left_dow - mx_rite_dow) +
c[2] * (my_left__up - my_left_dow) +
c[3] * (my_rite__up - my_rite_dow);
return( yafr );
}
/* Pointers to write to / read from, number of bands,
* how many bytes to add to move down a line.
*/
/* T is the type of pixels we are reading and writing, D is a type large
* enough to hold (T1 - T2) ** 2.
*/
/* Fixed-point version for 8/16 bit ints.
*/
template <typename T, typename D, int min_value, int max_value>
static void inline
yafrsmooth_int_tab( PEL *pout, const PEL *pin,
const int bands, const int lskip,
const double sharpening,
const int *cx, const int *cy, const double *cs )
{
T* restrict out = (T *) pout;
const T* restrict in = (T *) pin;
const int b1 = bands;
const int b2 = 2 * bands;
const int b3 = 3 * bands;
const int l1 = lskip / sizeof( T );
const int l2 = 2 * lskip / sizeof( T );
const int l3 = 3 * lskip / sizeof( T );
for( int z = 0; z < bands; z++ ) {
const T uno_one = in[0];
const T uno_two = in[b1];
const T uno_thr = in[b2];
const T uno_fou = in[b3];
const T dos_one = in[l1];
const T dos_two = in[b1 + l1];
const T dos_thr = in[b2 + l1];
const T dos_fou = in[b3 + l1];
const T tre_one = in[l2];
const T tre_two = in[b1 + l2];
const T tre_thr = in[b2 + l2];
const T tre_fou = in[b3 + l2];
const T qua_one = in[l3];
const T qua_two = in[b1 + l3];
const T qua_thr = in[b2 + l3];
const T qua_fou = in[b3 + l3];
const int bicubic = bicubic_int<T>(
uno_one, uno_two, uno_thr, uno_fou,
dos_one, dos_two, dos_thr, dos_fou,
tre_one, tre_two, tre_thr, tre_fou,
qua_one, qua_two, qua_thr, qua_fou,
cx, cy );
const float yafr = yafrsmooth<T, D>(
uno_one, uno_two, uno_thr, uno_fou,
dos_one, dos_two, dos_thr, dos_fou,
tre_one, tre_two, tre_thr, tre_fou,
qua_one, qua_two, qua_thr, qua_fou,
cs );
int result = bicubic +
sharpening * SMOOTH_SHARPENING_SCALE * yafr;
if( result < min_value )
result = min_value;
else if( result > max_value )
result = max_value;
*out = result;
in += 1;
out += 1;
}
}
/* Float version for int/float types.
*/
template <typename T, typename D> static void inline
yafrsmooth_float_tab( PEL *pout, const PEL *pin,
const int bands, const int lskip,
const double sharpening,
const double *cx, const double *cy, const double *cs )
{
T* restrict out = (T *) pout;
const T* restrict in = (T *) pin;
const int b1 = bands;
const int b2 = 2 * bands;
const int b3 = 3 * bands;
const int l1 = lskip / sizeof( T );
const int l2 = 2 * lskip / sizeof( T );
const int l3 = 3 * lskip / sizeof( T );
for( int z = 0; z < bands; z++ ) {
const T uno_one = in[0];
const T uno_two = in[b1];
const T uno_thr = in[b2];
const T uno_fou = in[b3];
const T dos_one = in[l1];
const T dos_two = in[b1 + l1];
const T dos_thr = in[b2 + l1];
const T dos_fou = in[b3 + l1];
const T tre_one = in[l2];
const T tre_two = in[b1 + l2];
const T tre_thr = in[b2 + l2];
const T tre_fou = in[b3 + l2];
const T qua_one = in[l3];
const T qua_two = in[b1 + l3];
const T qua_thr = in[b2 + l3];
const T qua_fou = in[b3 + l3];
const T bicubic = bicubic_float<T>(
uno_one, uno_two, uno_thr, uno_fou,
dos_one, dos_two, dos_thr, dos_fou,
tre_one, tre_two, tre_thr, tre_fou,
qua_one, qua_two, qua_thr, qua_fou,
cx, cy );
const float yafr = yafrsmooth<T, D>(
uno_one, uno_two, uno_thr, uno_fou,
dos_one, dos_two, dos_thr, dos_fou,
tre_one, tre_two, tre_thr, tre_fou,
qua_one, qua_two, qua_thr, qua_fou,
cs );
*out = bicubic + sharpening * SMOOTH_SHARPENING_SCALE * yafr;
in += 1;
out += 1;
}
}
/* Given an offset in [0,1], calculate c0, c1, c2, c3, the yafr-smooth pixel
* weights.
*/
static void inline
calculate_coefficients_smooth( const double x, const double y, double c[4] )
{
const double dx = 1.f - x;
const double dy = 1.f - y;
g_assert( x >= 0 && x < 1 );
g_assert( y >= 0 && y < 1 );
c[0] = dx * x * dy;
c[1] = dx * x * y;
c[2] = dy * y * dx;
c[3] = dy * y * x;
}
/* High-quality double-only version.
*/
static void inline
yafrsmooth_notab( PEL *pout, const PEL *pin,
const int bands, const int lskip,
const double sharpening,
double x, double y )
{
double * restrict out = (double *) pout;
const double * restrict in = (double *) pin;
const int b1 = bands;
const int b2 = 2 * bands;
const int b3 = 3 * bands;
const int l1 = lskip / sizeof( double );
const int l2 = 2 * lskip / sizeof( double );
const int l3 = 3 * lskip / sizeof( double );
double cx[4];
double cy[4];
calculate_coefficients_catmull( x, cx );
calculate_coefficients_catmull( y, cy );
double cs[4];
calculate_coefficients_smooth( x, y, cs );
for( int z = 0; z < bands; z++ ) {
const double uno_one = in[0];
const double uno_two = in[b1];
const double uno_thr = in[b2];
const double uno_fou = in[b3];
const double dos_one = in[l1];
const double dos_two = in[b1 + l1];
const double dos_thr = in[b2 + l1];
const double dos_fou = in[b3 + l1];
const double tre_one = in[l2];
const double tre_two = in[b1 + l2];
const double tre_thr = in[b2 + l2];
const double tre_fou = in[b3 + l2];
const double qua_one = in[l3];
const double qua_two = in[b1 + l3];
const double qua_thr = in[b2 + l3];
const double qua_fou = in[b3 + l3];
const double bicubic = bicubic_float<double>(
uno_one, uno_two, uno_thr, uno_fou,
dos_one, dos_two, dos_thr, dos_fou,
tre_one, tre_two, tre_thr, tre_fou,
qua_one, qua_two, qua_thr, qua_fou,
cx, cy );
const double yafr = yafrsmooth<double, double>(
uno_one, uno_two, uno_thr, uno_fou,
dos_one, dos_two, dos_thr, dos_fou,
tre_one, tre_two, tre_thr, tre_fou,
qua_one, qua_two, qua_thr, qua_fou,
cs );
*out = bicubic + sharpening * SMOOTH_SHARPENING_SCALE * yafr;
in += 1;
out += 1;
}
}
static void
vips_interpolate_yafrsmooth_interpolate( VipsInterpolate *interpolate,
PEL *out, REGION *in, double x, double y )
{
VipsInterpolateYafrsmoothClass *yafrsmooth_class =
VIPS_INTERPOLATE_YAFRSMOOTH_GET_CLASS( interpolate );
VipsInterpolateYafrsmooth *yafrsmooth =
VIPS_INTERPOLATE_YAFRSMOOTH( interpolate );
/* Scaled int.
*/
const double sx = x * VIPS_TRANSFORM_SCALE;
const double sy = y * VIPS_TRANSFORM_SCALE;
const int sxi = FLOOR( sx );
const int syi = FLOOR( sy );
/* Get index into interpolation table and unscaled integer
* position.
*/
const int tx = sxi & (VIPS_TRANSFORM_SCALE - 1);
const int ty = syi & (VIPS_TRANSFORM_SCALE - 1);
const int xi = sxi >> VIPS_TRANSFORM_SHIFT;
const int yi = syi >> VIPS_TRANSFORM_SHIFT;
/* Look up the tables we need.
*/
const int *cxi = yafrsmooth_class->matrixi[tx];
const int *cyi = yafrsmooth_class->matrixi[ty];
const double *cxf = yafrsmooth_class->matrixf[tx];
const double *cyf = yafrsmooth_class->matrixf[ty];
/* Position weights for yafrsmooth.
*/
double cs[4];
calculate_coefficients_smooth( x - xi, y - yi, cs );
/* Back and up one to get the top-left of the 4x4.
*/
const PEL *p = (PEL *) IM_REGION_ADDR( in, xi - 1, yi - 1 );
/* Pel size and line size.
*/
const int bands = in->im->Bands;
const int lskip = IM_REGION_LSKIP( in );
#ifdef DEBUG
printf( "vips_interpolate_yafrsmooth_interpolate: %g %g\n", x, y );
printf( "\tleft=%d, top=%d, width=%d, height=%d\n",
xi - 1, yi - 1, 4, 4 );
#endif /*DEBUG*/
switch( in->im->BandFmt ) {
case IM_BANDFMT_UCHAR:
yafrsmooth_int_tab<unsigned char, int, 0, UCHAR_MAX>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxi, cyi, cs );
break;
case IM_BANDFMT_CHAR:
yafrsmooth_int_tab<signed char, int, SCHAR_MIN, SCHAR_MAX>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxi, cyi, cs );
break;
case IM_BANDFMT_USHORT:
yafrsmooth_int_tab<unsigned short, int, 0, USHRT_MAX>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxi, cyi, cs );
break;
case IM_BANDFMT_SHORT:
yafrsmooth_int_tab<signed short, int, SHRT_MIN, SHRT_MAX>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxi, cyi, cs );
break;
case IM_BANDFMT_UINT:
yafrsmooth_float_tab<unsigned int, float>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxf, cyf, cs );
break;
case IM_BANDFMT_INT:
yafrsmooth_float_tab<signed int, float>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxf, cyf, cs );
break;
case IM_BANDFMT_FLOAT:
yafrsmooth_float_tab<float, float>(
out, p, bands, lskip,
yafrsmooth->sharpening,
cxf, cyf, cs );
break;
case IM_BANDFMT_DOUBLE:
yafrsmooth_notab(
out, p, bands, lskip,
yafrsmooth->sharpening,
x - xi, y - yi );
break;
case IM_BANDFMT_COMPLEX:
yafrsmooth_float_tab<float, float>(
out, p, bands * 2, lskip,
yafrsmooth->sharpening,
cxf, cyf, cs );
break;
case IM_BANDFMT_DPCOMPLEX:
yafrsmooth_notab(
out, p, bands * 2, lskip,
yafrsmooth->sharpening,
x - xi, y - yi );
break;
default:
break;
}
}
static void
vips_interpolate_yafrsmooth_class_init( VipsInterpolateYafrsmoothClass *iclass )
{
VipsInterpolateClass *interpolate_class =
VIPS_INTERPOLATE_CLASS( iclass );
vips_interpolate_yafrsmooth_parent_class =
VIPS_INTERPOLATE_CLASS( g_type_class_peek_parent( iclass ) );
interpolate_class->interpolate =
vips_interpolate_yafrsmooth_interpolate;
interpolate_class->window_size = 4;
/* Build the tables of pre-computed coefficients.
*/
for( int x = 0; x < VIPS_TRANSFORM_SCALE + 1; x++ ) {
calculate_coefficients_catmull(
(float) x / VIPS_TRANSFORM_SCALE,
iclass->matrixf[x] );
for( int i = 0; i < 4; i++ )
iclass->matrixi[x][i] =
iclass->matrixf[x][i] * VIPS_INTERPOLATE_SCALE;
}
}
static void
vips_interpolate_yafrsmooth_init( VipsInterpolateYafrsmooth *yafrsmooth )
{
#ifdef DEBUG
printf( "vips_interpolate_yafrsmooth_init: " );
vips_object_print( VIPS_OBJECT( yafrsmooth ) );
#endif /*DEBUG*/
yafrsmooth->sharpening = 1.0;
}
GType
vips_interpolate_yafrsmooth_get_type()
{
static GType type = 0;
if( !type ) {
static const GTypeInfo info = {
sizeof( VipsInterpolateYafrsmoothClass ),
NULL, /* base_init */
NULL, /* base_finalize */
(GClassInitFunc) vips_interpolate_yafrsmooth_class_init,
NULL, /* class_finalize */
NULL, /* class_data */
sizeof( VipsInterpolateYafrsmooth ),
32, /* n_preallocs */
(GInstanceInitFunc) vips_interpolate_yafrsmooth_init,
};
type = g_type_register_static( VIPS_TYPE_INTERPOLATE,
"VipsInterpolateYafrsmooth", &info,
(GTypeFlags) 0 );
}
return( type );
}
VipsInterpolate *
vips_interpolate_yafrsmooth_new( void )
{
return( VIPS_INTERPOLATE( g_object_new(
VIPS_TYPE_INTERPOLATE_YAFRSMOOTH, NULL ) ) );
}
void
vips_interpolate_yafrsmooth_set_sharpening(
VipsInterpolateYafrsmooth *yafrsmooth,
double sharpening )
{
yafrsmooth->sharpening = sharpening;
}
/* Convenience: return a static yafrsmooth you don't need to free.
*/
VipsInterpolate *
vips_interpolate_yafrsmooth_static( void )
{
static VipsInterpolate *interpolate = NULL;
if( !interpolate )
interpolate = vips_interpolate_yafrsmooth_new();
return( interpolate );
}