libvips/libvips/resample/templates.h

271 lines
6.8 KiB
C++

/* various interpolation templates
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
* FAST_PSEUDO_FLOOR is a floor and floorf replacement which has been
* found to be faster on several linux boxes than the library
* version. It returns the floor of its argument unless the argument
* is a negative integer, in which case it returns one less than the
* floor. For example:
*
* FAST_PSEUDO_FLOOR(0.5) = 0
*
* FAST_PSEUDO_FLOOR(0.) = 0
*
* FAST_PSEUDO_FLOOR(-.5) = -1
*
* as expected, but
*
* FAST_PSEUDO_FLOOR(-1.) = -2
*
* The locations of the discontinuities of FAST_PSEUDO_FLOOR are the
* same as floor and floorf; it is just that at negative integers the
* function is discontinuous on the right instead of the left.
*/
#define FAST_PSEUDO_FLOOR(x) ( (int)(x) - ( (x) < 0. ) )
/*
* Various casts which assume that the data is already in range. (That
* is, they are to be used with monotone samplers.)
*/
template <typename T> static T inline
to_fptypes( const double val )
{
const T newval = val;
return( newval );
}
template <typename T> static T inline
to_withsign( const double val )
{
const int sign_of_val = 2 * ( val >= 0. ) - 1;
const int rounded_abs_val = .5 + sign_of_val * val;
const T newval = sign_of_val * rounded_abs_val;
return( newval );
}
template <typename T> static T inline
to_nosign( const double val )
{
const T newval = .5 + val;
return( newval );
}
/*
* Various bilinear implementation templates. Note that no clampling
* is used: There is an assumption that the data is such that
* over/underflow is not an issue:
*/
/*
* Bilinear interpolation for float and double types. The first four
* inputs are weights, the last four are the corresponding pixel
* values:
*/
template <typename T> static T inline
bilinear_fptypes(
const double w_times_z,
const double x_times_z,
const double w_times_y,
const double x_times_y,
const double tre_thr,
const double tre_thrfou,
const double trequa_thr,
const double trequa_thrfou )
{
const T newval =
w_times_z * tre_thr +
x_times_z * tre_thrfou +
w_times_y * trequa_thr +
x_times_y * trequa_thrfou;
return( newval );
}
/*
* Bilinear interpolation for signed integer types:
*/
template <typename T> static T inline
bilinear_withsign(
const double w_times_z,
const double x_times_z,
const double w_times_y,
const double x_times_y,
const double tre_thr,
const double tre_thrfou,
const double trequa_thr,
const double trequa_thrfou )
{
const double val =
w_times_z * tre_thr +
x_times_z * tre_thrfou +
w_times_y * trequa_thr +
x_times_y * trequa_thrfou;
const int sign_of_val = 2 * ( val >= 0. ) - 1;
const int rounded_abs_val = .5 + sign_of_val * val;
const T newval = sign_of_val * rounded_abs_val;
return( newval );
}
/*
* Bilinear Interpolation for unsigned integer types:
*/
template <typename T> static T inline
bilinear_nosign(
const double w_times_z,
const double x_times_z,
const double w_times_y,
const double x_times_y,
const double tre_thr,
const double tre_thrfou,
const double trequa_thr,
const double trequa_thrfou )
{
const T newval =
w_times_z * tre_thr +
x_times_z * tre_thrfou +
w_times_y * trequa_thr +
x_times_y * trequa_thrfou +
0.5;
return( newval );
}
/*
* Bicubic (Catmull-Rom) interpolation templates:
*/
/* Fixed-point integer bicubic, used for 8 and 16-bit types.
*/
template <typename T> static int inline
bicubic_int(
const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
const int* restrict cx, const int* restrict cy )
{
const int r0 =
(cx[0] * uno_one +
cx[1] * uno_two +
cx[2] * uno_thr +
cx[3] * uno_fou) >> VIPS_INTERPOLATE_SHIFT;
const int r1 =
(cx[0] * dos_one +
cx[1] * dos_two +
cx[2] * dos_thr +
cx[3] * dos_fou) >> VIPS_INTERPOLATE_SHIFT;
const int r2 =
(cx[0] * tre_one +
cx[1] * tre_two +
cx[2] * tre_thr +
cx[3] * tre_fou) >> VIPS_INTERPOLATE_SHIFT;
const int r3 =
(cx[0] * qua_one +
cx[1] * qua_two +
cx[2] * qua_thr +
cx[3] * qua_fou) >> VIPS_INTERPOLATE_SHIFT;
return( (cy[0] * r0 +
cy[1] * r1 +
cy[2] * r2 +
cy[3] * r3) >> VIPS_INTERPOLATE_SHIFT );
}
/* Floating-point bicubic, used for int/float/double types.
*/
template <typename T> static T inline
bicubic_float(
const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
const double* restrict cx, const double* restrict cy )
{
return(
cy[0] * (cx[0] * uno_one +
cx[1] * uno_two +
cx[2] * uno_thr +
cx[3] * uno_fou)
+
cy[1] * (cx[0] * dos_one +
cx[1] * dos_two +
cx[2] * dos_thr +
cx[3] * dos_fou)
+
cy[2] * (cx[0] * tre_one +
cx[1] * tre_two +
cx[2] * tre_thr +
cx[3] * tre_fou)
+
cy[3] * (cx[0] * qua_one +
cx[1] * qua_two +
cx[2] * qua_thr +
cx[3] * qua_fou) );
}
/* Given an offset in [0,1] (we can have x == 1 when building tables),
* calculate c0, c1, c2, c3, the catmull-rom coefficients. This is called
* from the interpolator as well as from the table builder.
*/
static void inline
calculate_coefficients_catmull( const double x, double c[4] )
{
/* Nicolas believes that the following is an hitherto unknown
* hyper-efficient method of computing Catmull-Rom coefficients. It
* only uses 4* & 1+ & 5- for a total of only 10 flops to compute
* four coefficients.
*/
const double cr1 = 1. - x;
const double cr2 = -.5 * x;
const double cr3 = cr1 * cr2;
const double cone = cr1 * cr3;
const double cfou = x * cr3;
const double cr4 = cfou - cone;
const double ctwo = cr1 - cone + cr4;
const double cthr = x - cfou - cr4;
g_assert( x >= 0. && x <= 1. );
c[0] = cone;
c[3] = cfou;
c[1] = ctwo;
c[2] = cthr;
}