libvips/libsrc/freq_filt/im_fwfft.c

644 lines
15 KiB
C

/* @(#) Does a forward fft on an input image descriptor
* @(#) using the function fft_sp. (float fft)
* @(#) Input can be any complex or no-complex; output is complex (two floats)
* @(#)
* @(#) Usage:
* @(#) int im_fwfft(in, out)
* @(#) IMAGE *in, *out;
* @(#)
*
* Copyright: 1990, N. Dessipris.
*
* Author: Nicos Dessipris
* Written on: 12/04/1990
* Modified on : 09/05/1990 to cope with float input
* Modified on : 08/03/1991 history removed
* Modified on : 03/04/1991 to cope with any input
*
* 28/6/95 JC
* - rewritten to use im_clip2f() rather than own code
* - memory leaks fixed
* 10/9/98 JC
* - frees memory more quickly
* 2/4/02 JC
* - fftw code added
* 13/7/02 JC
* - output Type set to IM_TYPE_FOURIER to help nip
* 27/2/03 JC
* - exploits real_to_complex() path in libfftw for real input (thanks
* Matt) for a 2x speed-up
* 17/11/03 JC
* - fix a segv for wider than high images in the real_to_complex() path
* (thanks Andrey)
* - fixes to real_to_complex() path to give the correct result for
* non-square images, including odd widths and heights
* 3/11/04
* - added fftw3 support
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <math.h>
#ifdef HAVE_FFTW
#include <rfftw.h>
#endif /*HAVE_FFTW*/
#ifdef HAVE_FFTW3
#include <fftw3.h>
#endif /*HAVE_FFTW3*/
#include <vips/vips.h>
#include <vips/internal.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
#ifdef HAVE_FFTW
/* Call rfftw for a 1 band real image.
*/
static int
rfwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
const int size = in->Xsize * in->Ysize;
const int half_width = in->Xsize / 2 + 1;
/* Pack to double real here.
*/
IMAGE *real = im_open_local( dummy, "fwfft1:1", "t" );
/* Transform to halfcomplex here.
*/
double *half_complex = IM_ARRAY( dummy,
in->Ysize * half_width * 2, double );
rfftwnd_plan plan;
double *buf, *q, *p;
int x, y;
if( !real || !half_complex || im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
im_error( "im_fwfft", _( "one band uncoded only" ) );
return( -1 );
}
if( im_clip2d( in, real ) )
return( -1 );
/* Make the plan for the transform. Yes, they really do use nx for
* height and ny for width.
*/
if( !(plan = rfftw2d_create_plan( in->Ysize, in->Xsize,
FFTW_FORWARD, FFTW_MEASURE | FFTW_USE_WISDOM )) ) {
im_error( "im_fwfft", _( "unable to create transform plan" ) );
return( -1 );
}
rfftwnd_one_real_to_complex( plan,
(fftw_real *) real->data, (fftw_complex *) half_complex );
rfftwnd_destroy_plan( plan );
/* WIO to out.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Bbits = IM_BBITS_DPCOMPLEX;
out->BandFmt = IM_BANDFMT_DPCOMPLEX;
if( im_setupout( out ) )
return( -1 );
if( !(buf = (double *) IM_ARRAY( dummy,
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Copy to out and normalise. The right half is the up/down and
* left/right flip of the left, but conjugated. Do the first
* row separately, then mirror around the centre row.
*/
p = half_complex;
q = buf;
for( x = 0; x < half_width; x++ ) {
q[0] = p[0] / size;
q[1] = p[1] / size;
p += 2;
q += 2;
}
p = half_complex + ((in->Xsize + 1) / 2 - 1) * 2;
for( x = half_width; x < out->Xsize; x++ ) {
q[0] = p[0] / size;
q[1] = -1.0 * p[1] / size;
p -= 2;
q += 2;
}
if( im_writeline( 0, out, (PEL *) buf ) )
return( -1 );
for( y = 1; y < out->Ysize; y++ ) {
p = half_complex + y * half_width * 2;
q = buf;
for( x = 0; x < half_width; x++ ) {
q[0] = p[0] / size;
q[1] = p[1] / size;
p += 2;
q += 2;
}
/* Good grief.
*/
p = half_complex + 2 *
((out->Ysize - y + 1) * half_width - 2 +
(in->Xsize & 1));
for( x = half_width; x < out->Xsize; x++ ) {
q[0] = p[0] / size;
q[1] = -1.0 * p[1] / size;
p -= 2;
q += 2;
}
if( im_writeline( y, out, (PEL *) buf ) )
return( -1 );
}
return( 0 );
}
/* Call fftw for a 1 band complex image.
*/
static int
cfwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
fftwnd_plan plan;
double *buf, *q, *p;
int x, y;
IMAGE *cmplx = im_open_local( dummy, "fwfft1:1", "t" );
/* Make dp complex image.
*/
if( !cmplx || im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
im_error( "im_fwfft", _( "one band uncoded only" ) );
return( -1 );
}
if( im_clip2dcm( in, cmplx ) )
return( -1 );
/* Make the plan for the transform.
*/
if( !(plan = fftw2d_create_plan( in->Ysize, in->Xsize,
FFTW_FORWARD,
FFTW_MEASURE | FFTW_USE_WISDOM | FFTW_IN_PLACE )) ) {
im_error( "im_fwfft", _( "unable to create transform plan" ) );
return( -1 );
}
fftwnd_one( plan, (fftw_complex *) cmplx->data, NULL );
fftwnd_destroy_plan( plan );
/* WIO to out.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Bbits = IM_BBITS_DPCOMPLEX;
out->BandFmt = IM_BANDFMT_DPCOMPLEX;
if( im_setupout( out ) )
return( -1 );
if( !(buf = (double *) IM_ARRAY( dummy,
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Copy to out, normalise.
*/
for( p = (double *) cmplx->data, y = 0; y < out->Ysize; y++ ) {
int size = out->Xsize * out->Ysize;
q = buf;
for( x = 0; x < out->Xsize; x++ ) {
q[0] = p[0] / size;
q[1] = p[1] / size;
p += 2;
q += 2;
}
if( im_writeline( y, out, (PEL *) buf ) )
return( -1 );
}
return( 0 );
}
static int
fwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
if( im_iscomplex( in ) )
return( cfwfft1( dummy, in, out ) );
else
return( rfwfft1( dummy, in, out ) );
}
#else /*!HAVE_FFTW*/
#ifdef HAVE_FFTW3
/* Real to complex forward transform.
*/
static int
rfwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
const int size = in->Xsize * in->Ysize;
const int half_width = in->Xsize / 2 + 1;
/* Pack to double real here.
*/
IMAGE *real = im_open_local( dummy, "fwfft1:1", "t" );
/* Transform to halfcomplex here.
*/
double *half_complex = IM_ARRAY( dummy,
in->Ysize * half_width * 2, double );
/* We have to have a separate real buffer for the planner to work on.
*/
double *planner_scratch = IM_ARRAY( dummy,
in->Xsize * in->Ysize, double );
fftw_plan plan;
double *buf, *q, *p;
int x, y;
if( !real || !half_complex || im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
im_error( "im_fwfft", "%s", _( "one band uncoded only" ) );
return( -1 );
}
if( im_clip2d( in, real ) )
return( -1 );
/* Make the plan for the transform. Yes, they really do use nx for
* height and ny for width. Use a separate scratch buffer for the
* planner, we can't overwrite real->data
*/
if( !(plan = fftw_plan_dft_r2c_2d( in->Ysize, in->Xsize,
planner_scratch, (fftw_complex *) half_complex,
0 )) ) {
im_error( "im_fwfft",
"%s", _( "unable to create transform plan" ) );
return( -1 );
}
fftw_execute_dft_r2c( plan,
(double *) real->data, (fftw_complex *) half_complex );
fftw_destroy_plan( plan );
/* WIO to out.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Bbits = IM_BBITS_DPCOMPLEX;
out->BandFmt = IM_BANDFMT_DPCOMPLEX;
if( im_setupout( out ) )
return( -1 );
if( !(buf = (double *) IM_ARRAY( dummy,
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Copy to out and normalise. The right half is the up/down and
* left/right flip of the left, but conjugated. Do the first
* row separately, then mirror around the centre row.
*/
p = half_complex;
q = buf;
for( x = 0; x < half_width; x++ ) {
q[0] = p[0] / size;
q[1] = p[1] / size;
p += 2;
q += 2;
}
p = half_complex + ((in->Xsize + 1) / 2 - 1) * 2;
for( x = half_width; x < out->Xsize; x++ ) {
q[0] = p[0] / size;
q[1] = -1.0 * p[1] / size;
p -= 2;
q += 2;
}
if( im_writeline( 0, out, (PEL *) buf ) )
return( -1 );
for( y = 1; y < out->Ysize; y++ ) {
p = half_complex + y * half_width * 2;
q = buf;
for( x = 0; x < half_width; x++ ) {
q[0] = p[0] / size;
q[1] = p[1] / size;
p += 2;
q += 2;
}
/* Good grief.
*/
p = half_complex + 2 *
((out->Ysize - y + 1) * half_width - 2 +
(in->Xsize & 1));
for( x = half_width; x < out->Xsize; x++ ) {
q[0] = p[0] / size;
q[1] = -1.0 * p[1] / size;
p -= 2;
q += 2;
}
if( im_writeline( y, out, (PEL *) buf ) )
return( -1 );
}
return( 0 );
}
/* Complex to complex forward transform.
*/
static int
cfwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
fftw_plan plan;
double *buf, *q, *p;
int x, y;
IMAGE *cmplx = im_open_local( dummy, "fwfft1:1", "t" );
/* We have to have a separate buffer for the planner to work on.
*/
double *planner_scratch = IM_ARRAY( dummy,
in->Xsize * in->Ysize * 2, double );
/* Make dp complex image.
*/
if( !cmplx || im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
im_error( "im_fwfft",
"%s", _( "one band uncoded only" ) );
return( -1 );
}
if( im_clip2dcm( in, cmplx ) )
return( -1 );
/* Make the plan for the transform.
*/
if( !(plan = fftw_plan_dft_2d( in->Ysize, in->Xsize,
(fftw_complex *) planner_scratch,
(fftw_complex *) planner_scratch,
FFTW_FORWARD,
0 )) ) {
im_error( "im_fwfft",
"%s", _( "unable to create transform plan" ) );
return( -1 );
}
fftw_execute_dft( plan,
(fftw_complex *) cmplx->data, (fftw_complex *) cmplx->data );
fftw_destroy_plan( plan );
/* WIO to out.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Bbits = IM_BBITS_DPCOMPLEX;
out->BandFmt = IM_BANDFMT_DPCOMPLEX;
if( im_setupout( out ) )
return( -1 );
if( !(buf = (double *) IM_ARRAY( dummy,
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Copy to out, normalise.
*/
for( p = (double *) cmplx->data, y = 0; y < out->Ysize; y++ ) {
int size = out->Xsize * out->Ysize;
q = buf;
for( x = 0; x < out->Xsize; x++ ) {
q[0] = p[0] / size;
q[1] = p[1] / size;
p += 2;
q += 2;
}
if( im_writeline( y, out, (PEL *) buf ) )
return( -1 );
}
return( 0 );
}
static int
fwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
if( im_iscomplex( in ) )
return( cfwfft1( dummy, in, out ) );
else
return( rfwfft1( dummy, in, out ) );
}
#else /*!HAVE_FFTW3*/
/* Transform a 1 band image with vips's built-in fft routine.
*/
static int
fwfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
int size = in->Xsize * in->Ysize;
int bpx = im_ispoweroftwo( in->Xsize );
int bpy = im_ispoweroftwo( in->Ysize );
float *buf, *q, *p1, *p2;
int x, y;
/* Buffers for real and imaginary parts.
*/
IMAGE *real = im_open_local( dummy, "fwfft1:1", "t" );
IMAGE *imag = im_open_local( dummy, "fwfft1:2", "t" );
/* Temporaries.
*/
IMAGE *t1 = im_open_local( dummy, "fwfft1:3", "p" );
if( !real || !imag || !t1 )
return( -1 );
if( im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ||
im_iscomplex( in ) ) {
im_error( "im_fwfft",
"%s", _( "one band non-complex uncoded only" ) );
return( -1 );
}
if( !bpx || !bpy ) {
im_error( "im_fwfft",
"%s", _( "sides must be power of 2" ) );
return( -1 );
}
/* Make sure we have a float input image.
*/
if( im_clip2f( in, real ) )
return( -1 );
/* Make a buffer of 0 floats of the same size for the imaginary part.
*/
if( im_black( t1, in->Xsize, in->Ysize, 1 ) )
return( -1 );
if( im_clip2f( t1, imag ) )
return( -1 );
/* Transform!
*/
if( im__fft_sp( (float *) real->data, (float *) imag->data,
bpx - 1, bpy - 1 ) ) {
im_error( "im_fwfft",
"%s", _( "fft_sp failed" ) );
return( -1 );
}
/* WIO to out.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Bbits = IM_BBITS_COMPLEX;
out->BandFmt = IM_BANDFMT_COMPLEX;
if( im_setupout( out ) )
return( -1 );
if( !(buf = (float *) IM_ARRAY( dummy,
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Gather together real and imag parts. We have to normalise output!
*/
for( p1 = (float *) real->data, p2 = (float *) imag->data,
y = 0; y < out->Ysize; y++ ) {
q = buf;
for( x = 0; x < out->Xsize; x++ ) {
q[0] = *p1++ / size;
q[1] = *p2++ / size;
q += 2;
}
if( im_writeline( y, out, (PEL *) buf ) )
return( -1 );
}
return( 0 );
}
#endif /*HAVE_FFTW3*/
#endif /*HAVE_FFTW*/
/* Transform an n-band image with a 1-band processing function.
*/
int
im__fftproc( IMAGE *dummy, IMAGE *in, IMAGE *out, im__fftproc_fn fn )
{
if( im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Bands == 1 ) {
if( fn( dummy, in, out ) )
return( -1 );
}
else {
IMAGE *acc;
int b;
for( acc = NULL, b = 0; b < in->Bands; b++ ) {
IMAGE *t1 = im_open_local( dummy,
"fwfftn:1", "p" );
IMAGE *t2 = im_open_local( dummy,
"fwfftn:2", "p" );
if( !t1 || !t2 ||
im_extract_band( in, t1, b ) ||
fn( dummy, t1, t2 ) )
return( -1 );
if( !acc )
acc = t2;
else {
IMAGE *t3 = im_open_local( dummy,
"fwfftn:3", "p" );
if( !t3 || im_bandjoin( acc, t2, t3 ) )
return( -1 );
acc = t3;
}
}
if( im_copy( acc, out ) )
return( -1 );
}
return( 0 );
}
int
im_fwfft( IMAGE *in, IMAGE *out )
{
IMAGE *dummy = im_open( "im_fwfft:1", "p" );
if( !dummy )
return( -1 );
if( im__fftproc( dummy, in, out, fwfft1 ) ) {
im_close( dummy );
return( -1 );
}
im_close( dummy );
/* Set type hint.
*/
out->Type = IM_TYPE_FOURIER;
return( 0 );
}