libvips/libvips/mosaicing/matrixinvert.c
2020-11-06 10:29:30 +00:00

493 lines
12 KiB
C

/* solve and invert matrices
*
* 19/4/20 kleisauke
* - from im_matinv
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <vips/vips.h>
/* Our state.
*/
typedef struct _VipsMatrixinvert {
VipsOperation parent_instance;
VipsImage *in;
VipsImage *out;
/* .. and cast to a matrix.
*/
VipsImage *mat;
/* The LU decomposed matrix.
*/
VipsImage *lu;
} VipsMatrixinvert;
typedef VipsOperationClass VipsMatrixinvertClass;
G_DEFINE_TYPE( VipsMatrixinvert, vips_matrixinvert, VIPS_TYPE_OPERATION );
static void
vips_matrixinvert_dispose( GObject *gobject )
{
VipsMatrixinvert *matrix = (VipsMatrixinvert *) gobject;
VIPS_UNREF( matrix->mat );
VIPS_UNREF( matrix->lu );
G_OBJECT_CLASS( vips_matrixinvert_parent_class )->dispose( gobject );
}
/* DBL_MIN is smallest *normalized* double precision float
*/
#define TOO_SMALL (2.0 * DBL_MIN)
/* Save a bit of typing.
*/
#define ME( m, i, j ) (*VIPS_MATRIX( (m), (i), (j) ))
/**
* lu_decomp:
* @mat: matrix to decompose
*
* This function takes any square NxN #VipsImage.
* It returns a #VipsImage which is (N+1)xN.
*
* It calculates the PLU decomposition, storing the upper and diagonal parts
* of U, together with the lower parts of L, as an NxN matrix in the first
* N rows of the new matrix. The diagonal parts of L are all set to unity
* and are not stored.
*
* The final row of the new #VipsImage has only integer entries, which
* represent the row-wise permutations made by the permutation matrix P.
*
* The scale and offset members of the input #VipsImage are ignored.
*
* See:
*
* PRESS, W. et al, 1992. Numerical Recipies in C; The Art of Scientific
* Computing, 2nd ed. Cambridge: Cambridge University Press, pp. 43-50.
*
* Returns: the decomposed matrix on success, or NULL on error.
*/
static VipsImage *
lu_decomp( VipsImage *mat )
{
int i, j, k;
double *row_scale;
VipsImage *lu;
if ( !(row_scale = VIPS_ARRAY( NULL, mat->Xsize, double )) ) {
return( NULL );
}
if( !(lu = vips_image_new_matrix( mat->Xsize, mat->Xsize + 1 )) ) {
g_free( row_scale );
return( NULL );
}
/* copy all coefficients and then perform decomposition in-place */
memcpy( VIPS_MATRIX( lu, 0, 0), VIPS_MATRIX( mat, 0, 0),
mat->Xsize * mat->Xsize * sizeof( double ) );
for( i = 0; i < mat->Xsize; ++i ) {
row_scale[i] = 0.0;
for( j = 0; j < mat->Xsize; ++j ) {
double abs_val = fabs( ME( lu, i, j ) );
/* find largest in each ROW */
if( abs_val > row_scale[i] )
row_scale[i] = abs_val;
}
if( !row_scale[i] ) {
vips_error( "matrixinvert", "singular matrix" );
g_object_unref( lu );
g_free( row_scale );
return( NULL );
}
/* fill array with scaling factors for each ROW */
row_scale[i] = 1.0 / row_scale[i];
}
for( j = 0; j < mat->Xsize; ++j ) { /* loop over COLs */
double max = -1.0;
int i_of_max;
/* not needed, but stops a compiler warning */
i_of_max = 0;
/* loop over ROWS in upper-half, except diagonal */
for( i = 0; i < j; ++i )
for( k = 0; k < i; ++k )
ME( lu, i, j ) -= ME( lu, i, k ) * ME( lu, k, j );
/* loop over ROWS in diagonal and lower-half */
for( i = j; i < mat->Xsize; ++i ) {
double abs_val;
for( k = 0; k < j; ++k )
ME( lu, i, j ) -= ME( lu, i, k ) * ME( lu, k, j );
/* find largest element in each COLUMN scaled so that */
/* largest in each ROW is 1.0 */
abs_val = row_scale[i] * fabs( ME( lu, i, j ) );
if( abs_val > max ) {
max = abs_val;
i_of_max = i;
}
}
if( fabs( ME( lu, i_of_max, j ) ) < TOO_SMALL ) {
/* divisor is near zero */
vips_error( "matrixinvert", "singular or near-singular matrix" );
g_object_unref( lu );
g_free( row_scale );
return( NULL );
}
if( i_of_max != j ) {
/* swap ROWS */
for( k = 0; k < mat->Xsize; ++k ) {
double temp = ME( lu, j, k );
ME( lu, j, k ) = ME( lu, i_of_max, k );
ME( lu, i_of_max, k ) = temp;
}
row_scale[i_of_max] = row_scale[j];
/* no need to copy this scale back up - we won't use it */
}
/* record permutation */
ME( lu, j, mat->Xsize ) = i_of_max;
/* divide by best (largest scaled) pivot found */
for( i = j + 1; i < mat->Xsize; ++i )
ME( lu, i, j ) /= ME( lu, j, j );
}
g_free( row_scale );
return( lu );
}
/**
* lu_solve:
* @lu: matrix to solve
* @vec: name for output matrix
*
* Solve the system of linear equations Ax=b, where matrix A has already
* been decomposed into LU form in VipsImage *lu. Input vector b is in
* vec and is overwritten with vector x.
*
* See:
*
* PRESS, W. et al, 1992. Numerical Recipies in C; The Art of Scientific
* Computing, 2nd ed. Cambridge: Cambridge University Press, pp. 43-50.
*
* See also: vips__matrixtranspose(), vips__matrixmultiply().
*
* Returns: 0 on success, -1 on error
*/
static int
lu_solve( VipsImage *lu, double *vec )
{
int i, j;
if( lu->Xsize + 1 != lu->Ysize ) {
vips_error( "matrixinvert", "not an LU decomposed matrix" );
return( -1 );
}
for( i = 0; i < lu->Xsize; ++i ) {
int i_perm = ME( lu, i, lu->Xsize );
if( i_perm != i ) {
double temp = vec[i];
vec[i] = vec[i_perm];
vec[i_perm] = temp;
}
for( j = 0; j < i; ++j )
vec[i] -= ME( lu, i, j ) * vec[j];
}
for( i = lu->Xsize - 1; i >= 0; --i ) {
for( j = i + 1; j < lu->Xsize; ++j )
vec[i] -= ME( lu, i, j ) * vec[j];
vec[i] /= ME( lu, i, i );
}
return( 0 );
}
static int
vips_matrixinvert_solve( VipsMatrixinvert *matrix )
{
VipsImage *out = matrix->out;
int i, j;
double *vec;
if( !(matrix->lu = lu_decomp( matrix->mat ) ) )
return( -1 );
if( !(vec = VIPS_ARRAY( matrix, matrix->lu->Xsize, double )) )
return( -1 );
for( j = 0; j < matrix->lu->Xsize; ++j ) {
for( i = 0; i < matrix->lu->Xsize; ++i )
vec[i] = 0.0;
vec[j] = 1.0;
if( lu_solve( matrix->lu, vec ) )
return( -1 );
for( i = 0; i < matrix->lu->Xsize; ++i )
ME( out, i, j ) = vec[i];
}
return( 0 );
}
static int
vips_matrixinvert_direct( VipsMatrixinvert *matrix )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( matrix );
VipsImage *in = matrix->mat;
VipsImage *out = matrix->out;
switch( matrix->mat->Xsize ) {
case 1:
{
double det = ME( in, 0, 0 );
if( fabs( det ) < TOO_SMALL ) {
/* divisor is near zero */
vips_error( class->nickname,
"%s", _( "singular or near-singular matrix" ) );
return( -1 );
}
ME( out, 0, 0 ) = 1.0 / det;
}
break;
case 2:
{
double det = ME( in, 0, 0 ) * ME( in, 1, 1 ) -
ME( in, 0, 1 ) * ME( in, 1, 0 );
double tmp;
if( fabs( det ) < TOO_SMALL ) {
/* divisor is near zero */
vips_error( class->nickname,
"%s", _( "singular or near-singular matrix" ) );
return( -1 );
}
tmp = 1.0 / det;
ME( out, 0, 0 ) = tmp * ME( in, 1, 1 );
ME( out, 0, 1 ) = -tmp * ME( in, 0, 1 );
ME( out, 1, 0 ) = -tmp * ME( in, 1, 0 );
ME( out, 1, 1 ) = tmp * ME( in, 0, 0 );
}
break;
case 3:
{
double det;
double tmp;
det = ME( in, 0, 0 ) * ( ME( in, 1, 1 ) *
ME( in, 2, 2 ) - ME( in, 1, 2 ) * ME( in, 2, 1 ) );
det -= ME( in, 0, 1 ) * ( ME( in, 1, 0 ) *
ME( in, 2, 2 ) - ME( in, 1, 2 ) * ME( in, 2, 0) );
det += ME( in, 0, 2) * ( ME( in, 1, 0 ) *
ME( in, 2, 1 ) - ME( in, 1, 1 ) * ME( in, 2, 0 ) );
if( fabs( det ) < TOO_SMALL ) {
/* divisor is near zero */
vips_error( class->nickname,
"%s", _( "singular or near-singular matrix" ) );
return( -1 );
}
tmp = 1.0 / det;
ME( out, 0, 0 ) = tmp * ( ME( in, 1, 1 ) * ME( in, 2, 2 ) -
ME( in, 1, 2 ) * ME( in, 2, 1 ) );
ME( out, 1, 0 ) = tmp * ( ME( in, 1, 2 ) * ME( in, 2, 0 ) -
ME( in, 1, 0 ) * ME( in, 2, 2 ) );
ME( out, 2, 0 ) = tmp * ( ME( in, 1, 0 ) * ME( in, 2, 1 ) -
ME( in, 1, 1 ) * ME( in, 2, 0 ) );
ME( out, 0, 1 ) = tmp * ( ME( in, 0, 2 ) * ME( in, 2, 1 ) -
ME( in, 0, 1 ) * ME( in, 2, 2 ) );
ME( out, 1, 1 ) = tmp * ( ME( in, 0, 0 ) * ME( in, 2, 2 ) -
ME( in, 0, 2 ) * ME( in, 2, 0 ) );
ME( out, 2, 1 ) = tmp * ( ME( in, 0, 1 ) * ME( in, 2, 0 ) -
ME( in, 0, 0 ) * ME( in, 2, 1 ) );
ME( out, 0, 2 ) = tmp * ( ME( in, 0, 1 ) * ME( in, 1, 2 ) -
ME( in, 0, 2 ) * ME( in, 1, 1 ) );
ME( out, 1, 2 ) = tmp * ( ME( in, 0, 2 ) * ME( in, 1, 0 ) -
ME( in, 0, 0 ) * ME( in, 1, 2 ) );
ME( out, 2, 2 ) = tmp * ( ME( in, 0, 0 ) * ME( in, 1, 1 ) -
ME( in, 0, 1 ) * ME( in, 1, 0 ) );
}
break;
/* TODO(kleisauke):
* We sometimes use 4x4 matrices, could we also make a
* direct version for those? For e.g.:
* https://stackoverflow.com/a/1148405/10952119 */
default:
g_assert( 0 );
return( -1 );
}
return( 0 );
}
static int
vips_matrixinvert_build( VipsObject *object )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( object );
VipsMatrixinvert *matrix = (VipsMatrixinvert *) object;
if( VIPS_OBJECT_CLASS( vips_matrixinvert_parent_class )->
build( object ) )
return( -1 );
if( vips_check_matrix( class->nickname, matrix->in, &matrix->mat ) )
return( -1 );
if( matrix->mat->Xsize != matrix->mat->Ysize ) {
vips_error( class->nickname, "%s", _( "non-square matrix" ) );
return( -1 );
}
g_object_set( matrix,
"out", vips_image_new_matrix( matrix->mat->Xsize,
matrix->mat->Ysize ),
NULL );
/* Direct path for < 4x4 matrices
*/
if( matrix->mat->Xsize >= 4 ) {
if( vips_matrixinvert_solve( matrix ) )
return( -1 );
}
else {
if( vips_matrixinvert_direct( matrix ) )
return( -1 );
}
return( 0 );
}
static void
vips_matrixinvert_class_init( VipsMatrixinvertClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *vobject_class = VIPS_OBJECT_CLASS( class );
gobject_class->dispose = vips_matrixinvert_dispose;
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
vobject_class->nickname = "matrixinvert";
vobject_class->description = _( "invert an matrix" );
vobject_class->build = vips_matrixinvert_build;
VIPS_ARG_IMAGE( class, "in", 0,
_( "Input" ),
_( "An square matrix" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsMatrixinvert, in ) );
VIPS_ARG_IMAGE( class, "out", 1,
_( "Output" ),
_( "Output matrix" ),
VIPS_ARGUMENT_REQUIRED_OUTPUT,
G_STRUCT_OFFSET( VipsMatrixinvert, out ) );
}
static void
vips_matrixinvert_init( VipsMatrixinvert *matrix )
{
}
/**
* vips_matrixinvert: (method)
* @m: matrix to invert
* @out: (out): output matrix
* @...: %NULL-terminated list of optional named arguments
*
* This operation calculates the inverse of the matrix represented in @m.
* The scale and offset members of the input matrix are ignored.
*
* See also: vips_matrixload().
*
* Returns: 0 on success, -1 on error
*/
int
vips_matrixinvert( VipsImage *m, VipsImage **out, ... )
{
va_list ap;
int result;
va_start( ap, out );
result = vips_call_split( "matrixinvert", ap, m, out );
va_end( ap );
return( result );
}