nuttx-apps/libnxwidgets/src/cscaledbitmap.cxx

614 lines
17 KiB
C++
Raw Normal View History

/****************************************************************************
* NxWidgets/libnxwidgets/src/cscaledbitmap.hxx
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX, NxWidgets, nor the names of its contributors
* me be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <cstring>
#include <nuttx/nx/nxglib.h>
#include "cscaledbitmap.hxx"
/****************************************************************************
* Pre-Processor Definitions
****************************************************************************/
/****************************************************************************
* Method Implementations
****************************************************************************/
using namespace NXWidgets;
/**
* Constructor.
*
* @param bitmap The bitmap structure being scaled.
* @newSize The new, scaled size of the image
*/
CScaledBitmap::CScaledBitmap(IBitmap *bitmap, struct nxgl_size_s &newSize)
: m_bitmap(bitmap), m_size(newSize)
{
// xScale will be used to convert a request X position to an X position
// in the contained bitmap:
//
// xImage = xRequested * oldWidth / newWidth
// = xRequested * xScale
m_xScale = itob16((uint32_t)m_bitmap->getWidth()) / newSize.w;
// Similarly, yScale will be used to convert a request Y position to a Y
// positionin the contained bitmap:
//
// yImage = yRequested * oldHeight / newHeight
// = yRequested * yScale
m_yScale = itob16((uint32_t)m_bitmap->getHeight()) / newSize.h;
// Allocate and initialize the row cache
size_t stride = bitmap->getStride();
m_rowCache[0] = new uint8_t[stride];
m_rowCache[1] = new uint8_t[stride];
// Read the first two rows into the cache
m_row = m_bitmap->getWidth(); // Set to an impossible value
cacheRows(0);
}
/**
* Destructor.
*/
CScaledBitmap::~CScaledBitmap(void)
{
// Delete the allocated row cache memory
if (m_rowCache[0])
{
delete m_rowCache[0];
}
if (m_rowCache[1])
{
delete m_rowCache[1];
}
// We are also responsible for deleting the contained IBitmap
if (m_bitmap)
{
delete m_bitmap;
}
}
/**
* Get the bitmap's color format.
*
* @return The bitmap's width.
*/
const uint8_t CScaledBitmap::getColorFormat(void) const
{
return m_bitmap->getColorFormat();
}
/**
* Get the bitmap's color format.
*
* @return The bitmap's color format.
*/
const uint8_t CScaledBitmap::getBitsPerPixel(void) const
{
return m_bitmap->getBitsPerPixel();
}
/**
* Get the bitmap's width (in pixels/columns).
*
* @return The bitmap's pixel depth.
*/
const nxgl_coord_t CScaledBitmap::getWidth(void) const
{
return m_size.w;
}
/**
* Get the bitmap's height (in rows).
*
* @return The bitmap's height (in rows).
*/
const nxgl_coord_t CScaledBitmap::getHeight(void) const
{
return m_size.h;
}
/**
* Get the bitmap's width (in bytes).
*
* @return The bitmap's width (in bytes).
*/
const size_t CScaledBitmap::getStride(void) const
{
return (m_bitmap->getBitsPerPixel() * m_size.w + 7) / 8;
}
/**
* Get one row from the bit map image.
*
2013-10-16 00:08:06 +02:00
* REVISIT: This algorithm is really intended to expand images. Hence,
* for example, interpolation is between row and row+1 and column and
* column+1 in the original, unscaled image. You would the interpolation
* differently if you really wanted to sub-sample well.
*
* @param x The offset into the row to get
* @param y The row number to get
* @param width The number of pixels to get from the row
* @param data The memory location provided by the caller
* in which to return the data. This should be at least
* (getWidth()*getBitsPerPixl() + 7)/8 bytes in length
* and properly aligned for the pixel color format.
* @param True if the run was returned successfully.
*/
bool CScaledBitmap::getRun(nxgl_coord_t x, nxgl_coord_t y,
nxgl_coord_t width, FAR void *data)
{
#if CONFIG_NXWIDGETS_FMT == FB_FMT_RGB8_332 || CONFIG_NXWIDGETS_FMT == FB_FMT_RGB24
FAR uint8_t *dest = (FAR uint8_t *)data;
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB16_565
FAR uint16_t *dest = (FAR uint16_t *)data;
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB32
FAR uint32_t *dest = (FAR uint32_t *)data;
#else
# error Unsupported, invalid, or undefined color format
#endif
// Check ranges. Casts to unsigned int are ugly but permit one-sided comparisons
if (((unsigned int)x >= (unsigned int)m_size.w) &&
((unsigned int)(x + width) > (unsigned int)m_size.w) &&
((unsigned int)y <= (unsigned int)m_size.h))
{
return false;
}
// Get the row number in the unscaled image corresponding to the
// requested y position. This must be either the exact row or the
// closest row just before the requested position
b16_t row16 = y * m_yScale;
nxgl_coord_t row = b16toi(row16);
// Get that row and the one after it into the row cache. We know that
// the pixel value that we want is one between the two rows. This
// may seem wasteful to read two entire rows. However, in normal usage
// we will be traversal each image from top-left to bottom-right in
// order. In that case, the caching is most efficient.
if (!cacheRows(row))
{
return false;
}
// Now scale and copy the data from the cached row data
for (int i = 0; i < width; i++, x++)
{
// Get the column number in the unscaled row corresponding to the
// requested x position. This must be either the exact column or the
// closest column just before the requested position
b16_t column = x * m_xScale;
// Get the color at the position on the first row
struct rgbcolor_s color1;
if (!rowColor(m_rowCache[0], column, color1))
{
gdbg("ERROR rowColor failed for the first row\n");
return false;
}
// Get the color at the position on the first row
struct rgbcolor_s color2;
if (!rowColor(m_rowCache[1], column, color2))
{
gdbg("ERROR rowColor failed for the second row\n");
return false;
}
// Check for transparent colors
bool transparent1;
bool transparent2;
#if CONFIG_NXWIDGETS_FMT == FB_FMT_RGB8_332
uint8_t color = RGBTO8(color1.r, color1.g, color1.b);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
color = RGBTO8(color2.r, color2.g, color2.b);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB16_565
uint16_t color = RGBTO16(color1.r, color1.g, color1.b);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
color = RGBTO16(color2.r, color2.g, color2.b);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB24 || CONFIG_NXWIDGETS_FMT == FB_FMT_RGB32
uint32_t color = RGBTO24(color1.r, color1.g, color1.b);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
color = RGBTO24(color2.r, color2.g, color2.b);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#else
# error Unsupported, invalid, or undefined color format
#endif
// Is one of the colors transparent?
struct rgbcolor_s scaledColor;
b16_t fraction b16frac(row16);
if (transparent1 || transparent2)
{
// Yes.. don't interpolate within transparent regions or
// between transparent and opaque regions.
// Get the color closest to the requested position
if (fraction < b16HALF)
{
scaledColor.r = color1.r;
scaledColor.g = color1.g;
scaledColor.b = color1.b;
}
else
{
scaledColor.r = color2.r;
scaledColor.g = color2.g;
scaledColor.b = color2.b;
}
}
else
{
// No.. both colors are opaque
if (!scaleColor(color1, color2, fraction, scaledColor))
{
return false;
}
}
// Write the interpolated data to the user buffer
#if CONFIG_NXWIDGETS_FMT == FB_FMT_RGB8_332
color = RGBTO8(scaledColor.r, scaledColor.g, scaledColor.b);
*dest++ = color;
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB16_565
color = RGBTO16(scaledColor.r, scaledColor.g, scaledColor.b);
*dest++ = color;
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB24
*dest++ = color2.b;
*dest++ = color2.r;
*dest++ = color2.g;
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB32
color = RGBTO24(scaledColor.r, scaledColor.g, scaledColor.b);
*dest++ = color;
#else
# error Unsupported, invalid, or undefined color format
#endif
}
return true;
}
/**
* Read two rows into the row cache
*
* @param row - The row number of the first row to cache
*/
bool CScaledBitmap::cacheRows(unsigned int row)
{
nxgl_coord_t bitmapWidth = m_bitmap->getWidth();
nxgl_coord_t bitmapHeight = m_bitmap->getHeight();
// A common case is to advance by one row. In this case, we only
// need to read one row
if (row == m_row + 1)
{
// Swap rows
FAR uint8_t *saveRow = m_rowCache[0];
m_rowCache[0] = m_rowCache[1];
m_rowCache[1] = saveRow;
2014-04-14 00:26:44 +02:00
// Save number of the first row that we have in the cache
m_row = row;
// Now read the new row into the second row cache buffer
if (++row >= (unsigned int)bitmapHeight)
{
row = bitmapHeight - 1;
}
if (!m_bitmap->getRun(0, row, bitmapWidth, m_rowCache[1]))
{
gdbg("Failed to read bitmap row %d\n", row);
return false;
}
}
// Do we need to read two new rows? Or do we already have the
// request row in the cache?
else if (row != m_row)
{
// Read the first row into the cache
if (row >= (unsigned int)bitmapHeight)
{
row = bitmapHeight - 1;
}
if (!m_bitmap->getRun(0, row, bitmapWidth, m_rowCache[0]))
{
gdbg("Failed to read bitmap row %d\n", row);
return false;
}
// Save number of the first row that we have in the cache
m_row = row;
// Read the next row into the cache
if (++row >= (unsigned int)bitmapHeight)
{
row = bitmapHeight - 1;
}
if (!m_bitmap->getRun(0, row, bitmapWidth, m_rowCache[1]))
{
gdbg("Failed to read bitmap row %d\n", row);
return false;
}
}
return true;
}
/**
* Given an two RGB colors and a fractional value, return the scaled
* value between the two colors.
*
* @param incolor1 - The first color to be used
* @param incolor2 - The second color to be used
* @param fraction - The fractional value
* @param outcolor - The returned, scaled color
*/
bool CScaledBitmap::scaleColor(FAR const struct rgbcolor_s &incolor1,
FAR const struct rgbcolor_s &incolor2,
b16_t fraction, FAR struct rgbcolor_s &outcolor)
{
uint8_t component;
b16_t red;
b16_t green;
b16_t blue;
// A fraction of < 0.5 would mean to use use mostly color1; a fraction
// greater than 0.5 would men to use mostly color2
b16_t remainder = b16ONE - fraction;
// Interpolate each color value (converting to b15)
red = (b16_t)incolor1.r * remainder + (b16_t)incolor2.r * fraction;
green = (b16_t)incolor1.g * remainder + (b16_t)incolor2.g * fraction;
blue = (b16_t)incolor1.b * remainder + (b16_t)incolor2.b * fraction;
// Return the integer, interpolated values, clipping to the range of
// uint8_t
component = b16toi(red);
outcolor.r = component < 256 ? component : 255;
component = b16toi(green);
outcolor.g = component < 256 ? component : 255;
component = b16toi(blue);
outcolor.b = component < 256 ? component : 255;
return true;
}
/**
* Given an image row and a non-integer column offset, return the
* interpolated RGB color value corresponding to that position
*
* @param row - The pointer to the row in the row cache to use
* @param column - The non-integer column offset
* @param outcolor - The returned, interpolated color
2014-04-14 00:26:44 +02:00
*
*/
bool CScaledBitmap::rowColor(FAR uint8_t *row, b16_t column,
FAR struct rgbcolor_s &outcolor)
{
// This is the col at or just before the pixel of interest
nxgl_coord_t col1 = b16toi(column);
nxgl_coord_t col2 = col1 + 1;
nxgl_coord_t bitmapWidth = m_bitmap->getWidth();
if (col2 >= bitmapWidth)
{
col2 = bitmapWidth - 1;
}
b16_t fraction = b16frac(column);
struct rgbcolor_s color1;
struct rgbcolor_s color2;
bool transparent1;
bool transparent2;
#if CONFIG_NXWIDGETS_FMT == FB_FMT_RGB8_332
uint8_t color = row[col1];
color1.r = RBG8RED(color);
color1.g = RBG8GREEN(color);
color1.b = RBG8BLUE(color);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
color = row[col2];
color2.r = RBG8RED(color);
color2.g = RBG8GREEN(color);
color2.b = RBG8BLUE(color);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB16_565
FAR uint16_t *row16 = (FAR uint16_t*)row;
uint16_t color = row16[col1];
color1.r = RBG16RED(color);
color1.g = RBG16GREEN(color);
color1.b = RBG16BLUE(color);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
color = row16[col2];
color2.r = RBG16RED(color);
color2.g = RBG16GREEN(color);
color2.b = RBG16BLUE(color);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB24
unsigned int ndx = 3*col1;
color1.r = row[ndx+2];
color1.g = row[ndx+1];
color1.b = row[ndx];
uint32_t color = RGBTO24(color1.r, color1.g, color1.b);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
ndx = 3*col2;
color2.r = row[ndx+2];
color2.g = row[ndx+1];
color2.b = row[ndx];
color = RGBTO24(color2.r, color2.g, color2.b);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#elif CONFIG_NXWIDGETS_FMT == FB_FMT_RGB32
FAR uint32_t *row32 = (FAR uint32_t*)row;
uint32_t color = row32[col1];
color1.r = RBG24RED(color);
color1.g = RBG24GREEN(color);
color1.b = RBG24BLUE(color);
transparent1 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
color = row32[col2];
color2.r = RBG24RED(color);
color2.g = RBG24GREEN(color);
color2.b = RBG24BLUE(color);
transparent2 = (color == CONFIG_NXWIDGETS_TRANSPARENT_COLOR);
#else
# error Unsupported, invalid, or undefined color format
#endif
// Is one of the colors transparent?
if (transparent1 || transparent2)
{
// Yes.. don't interpolate within transparent regions or
// between transparent and opaque regions.
// Return the color closest to the requested position
2013-10-16 00:08:06 +02:00
//
// A fraction of < 0.5 would mean to use use mostly color1; a fraction
// greater than 0.5 would men to use mostly color2
if (fraction < b16HALF)
{
outcolor.r = color1.r;
outcolor.g = color1.b;
outcolor.g = color1.g;
}
else
{
outcolor.r = color2.r;
outcolor.g = color2.b;
outcolor.g = color2.g;
}
return true;
}
else
{
// No.. both colors are opaque
return scaleColor(color1, color2, fraction, outcolor);
}
}