/*************************************************************************** * apps/examples/cc3000basic.c * * Derives from an application to demo an Arduino connected to the TI CC3000 * * Copyright (C) 2013 Chris Magagna - cmagagna@yahoo.com * Port to nuttx: * Alan Carvalho de Assis * David Sidrane * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Don't sue me if my code blows up your board and burns down your house * **************************************************************************** * * To connect an Arduino to the CC3000 you'll need to make these 6 connections * (in addition to the WiFi antenna, power etc). * * Name / pin on CC3000 module / pin on CC3000EM board / purpose * * SPI_CS / 12 / J4-8 / SPI Chip Select * The Arduino will set this pin LOW when it wants to * exchange data with the CC3000. By convention this is * Arduino pin 10, but any pin can be used. In this * program it will be called WLAN_CS * * SPI_DOUT / 13 / J4-9 / Data from the module to the Arduino * This is Arduino's MISO pin, and is how the CC3000 * will get bytes to the Arduino. For most Arduinos * MISO is pin 12 * * SPI_IRQ / 14 / J4-10 / CC3000 host notify * The CC3000 will drive this pin LOW to let the Arduino * know it's ready to send data. For a regular Arduino * (Uno, Nano, Leonardo) this will have to be connected * to pin 2 or 3 so you can use attachInterrupt(). In * this program it will be called WLAN_IRQ * * SPI_DIN / 15 / J4-11 Data from the Arduino to the CC3000 * This is the Arduino's MOSI pin, and is how the Arduino * will get bytes to the CC3000. For most Arduinos * MOSI is pin 11 * * SPI_CLK / 17 / J4-12 SPI clock * This is the Arduino's SCK pin. For most Arduinos * SCK is pin 13 * * VBAT_SW_EN / 26 / J5-5 Module enable * The Arduino will set this pin HIGH to turn the CC3000 * on. Any pin can be used. In this program it will be * called WLAN_EN * * WARNING #1: The CC3000 runs at 3.6V maximum so you can't run it from your * regular 5V Arduino power pin. Run it from 3.3V! * * WARNING #2: When transmitting the CC3000 will use up to 275mA current. Most * Arduinos' 3.3V pins can only supply up to 50mA current, so you'll need a * separate power supply for it (or a voltage regulator like the LD1117V33 * connected to your Arduino's 5V power pin). * * WARNING #3: The CC3000's IO pins are not 5V tolerant. If you're using a 5V * Arduino you will need a level shifter to convert these signals to 3.3V * so you don't blow up the module. * * You'll need to shift the pins for WLAN_CS, MOSI, SCK, and WLAN_EN. MISO can be * connected directly because it's an input pin for the Arduino and the Arduino * can read 3.3V signals directly. For WLAN_IRQ use a pullup resistor of 20K to * 100K Ohm -- one leg to the Arduino input pin + CC3000 SPI_IRQ pin, the other * leg to +3.3V. * * You can use a level shifter chip like the 74LVC245 or TXB0104 or you can use * a pair of resistors to make a voltage divider like this: * * Arduino pin -----> 560 Ohm --+--> 1K Ohm -----> GND * | * | * +---> CC3000 pin * * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include "board.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "shell.h" /**************************************************************************** * Public Function Prototypes ****************************************************************************/ void Initialize(void); void helpme(void); int execute(int cmd); void ShowBufferSize(void); void StartSmartConfig(void); void ManualConnect(void); void ManualAddProfile(void); void ListAccessPoints(void); void PrintIPBytes(uint8_t *ipBytes); void ShowInformation(void); /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define MS_PER_SEC 1000 #define US_PER_MS 1000 #define US_PER_SEC 1000000 /**************************************************************************** * Public Variables ****************************************************************************/ uint8_t isInitialized = false; /**************************************************************************** * Public Functions ****************************************************************************/ bool wait(long timeoutMs, volatile unsigned long *what, volatile unsigned long is) { long t_ms; struct timeval end, start; gettimeofday(&start, NULL); while (*what != is) { usleep(10*US_PER_MS); gettimeofday(&end, NULL); t_ms = ((end.tv_sec - start.tv_sec) * MS_PER_SEC) + ((end.tv_usec - start.tv_usec) / US_PER_MS) ; if (t_ms > timeoutMs) { return false; } } return true; } bool wait_on(long timeoutMs, volatile unsigned long *what, volatile unsigned long is,char * msg) { printf(msg); printf("..."); fflush(stdout); bool ret = wait(timeoutMs,what,is); if (!ret) { printf(" FAILED:Timeout!\n"); } else { printf(" Succeed\n"); } fflush(stdout); return ret; } void AsyncEventPrint(void) { printf("\n"); switch(lastAsyncEvent) { printf("CC3000 Async event: Simple config done\n"); break; case HCI_EVNT_WLAN_UNSOL_CONNECT: printf("CC3000 Async event: Unsolicited connect\n"); break; case HCI_EVNT_WLAN_UNSOL_DISCONNECT: printf("CC3000 Async event: Unsolicted disconnect\n"); break; case HCI_EVNT_WLAN_UNSOL_DHCP: printf("CC3000 Async event: Got IP address via DHCP: "); printf("%d", dhcpIPAddress[0]); printf("."); printf("%d", dhcpIPAddress[1]); printf("."); printf("%d", dhcpIPAddress[2]); printf("."); printf("%d\n", dhcpIPAddress[3]); break; case HCI_EVENT_CC3000_CAN_SHUT_DOWN: printf("CC3000 Async event: OK to shut down\n"); break; case HCI_EVNT_WLAN_KEEPALIVE: /* Once initialized, the CC3000 will send these keepalive events * every 20 seconds. */ printf("CC3000 Async event: Keepalive\n"); return; break; default: printf("AsyncCallback called with unhandled event! (0x%X)\n", lastAsyncEvent); break; } } void helpme(void) { printf("\n+-------------------------------------------+\n"); printf("| Nuttx CC3000 Demo Program |\n"); printf("+-------------------------------------------+\n\n"); printf(" 01 - Initialize the CC3000\n"); printf(" 02 - Show RX & TX buffer sizes, & free RAM\n"); printf(" 03 - Start Smart Config\n"); printf(" 04 - Manually connect to AP\n"); printf(" 05 - Manually add connection profile\n"); printf(" 06 - List access points\n"); printf(" 07 - Show CC3000 information\n"); printf(" 08 - Telnet\n"); printf("\n Type 01-07 to select above option: "); } int execute(int cmd) { int ret = 0; if (asyncNotificationWaiting) { asyncNotificationWaiting = false; AsyncEventPrint(); } printf("\n"); switch(cmd) { case '1': Initialize(); break; case '2': ShowBufferSize(); break; case '3': StartSmartConfig(); break; case '4': ManualConnect(); break; case '5': ManualAddProfile(); break; case '6': ListAccessPoints(); break; case '7': ShowInformation(); break; case '8': if (!isInitialized) { Initialize(); } shell_main(0, 0); break; case 'q': case 'Q': ret = 1; break; default: printf("**Unknown command \"%d\" **\n", cmd); break; } return ret; } void Initialize(void) { uint8_t fancyBuffer[MAC_ADDR_LEN]; if (isInitialized) { printf("CC3000 already initialized. Shutting down and restarting...\n"); wlan_stop(); usleep(1000000); /* Delay 1s */ } printf("Initializing CC3000...\n"); CC3000_Init(); printf(" CC3000 init complete.\n"); if (nvmem_read_sp_version(fancyBuffer) == 0) { printf(" Firmware version is: "); printf("%d", fancyBuffer[0]); printf("."); printf("%d\n", fancyBuffer[1]); } else { printf("Unable to get firmware version. Can't continue.\n"); return; } #if 0 if (nvmem_get_mac_address(fancyBuffer) == 0) { printf(" MAC address: "); for (i = 0; i < MAC_ADDR_LEN; i++) { if (i != 0) { printf(":"); } printf("%X", fancyBuffer[i]); } printf("\n"); isInitialized = true; } else { printf("Unable to get MAC address. Can't continue.\n"); } #else isInitialized = true; #endif } /* This just shows the compiled size of the transmit & recieve buffers */ void ShowBufferSize(void) { printf("Transmit buffer is %d bytes", CC3000_TX_BUFFER_SIZE); printf("Receive buffer is %d bytes", CC3000_RX_BUFFER_SIZE); } /* Smart Config is TI's way to let you connect your device to your WiFi network * without needing a keyboard and display to enter the network name, password, * etc. You run a little app on your iPhone, Android device, or laptop with Java * and it sends the config info to the CC3000 automagically, so the end user * doesn't need to do anything complicated. More details here: * * http://processors.wiki.ti.com/index.php/CC3000_Smart_Config * * This example deletes any currently saved WiFi profiles and goes over the top * with error checking, so it's easier to see exactly what's going on. You * probably won't need all of this code for your own Smart Config implementation. * * This example also doesn't use any of the AES enhanced security setup API calls * because frankly they're weirder than I want to deal with. */ /* The Simple Config Prefix always needs to be 'TTT' */ char simpleConfigPrefix[] = {'T', 'T', 'T'}; /* This is the default Device Name that TI's Smart Config app for iPhone etc. use. * You can change it to whatever you want, but then your users will need to type * that name into their phone or tablet when they run Smart Config. */ char device_name[] = "CC3000"; void StartSmartConfig(void) { long rval; if (!isInitialized) { printf("CC3000 not initialized; can't run Smart Config.\n"); return; } printf("Starting Smart Config\n"); printf(" Disabling auto-connect policy..."); if ((rval = wlan_ioctl_set_connection_policy(DISABLE, DISABLE, DISABLE)) !=0 ) { printf(" Failed!\n Setting auto connection policy failed, error: %X\n", rval); return; } printf(" Succeed\n"); printf(" Deleting all existing profiles..."); fflush(stdout); if ((rval = wlan_ioctl_del_profile(255)) !=0 ) { printf(" Failed!\n Deleting all profiles failed, error: %X\n", rval); return; } printf(" Succeed\n"); wait_on(20*MS_PER_SEC, &ulCC3000Connected, 0, " Waiting until disconnected"); printf(" Setting smart config prefix..."); fflush(stdout); if ((rval = wlan_smart_config_set_prefix(simpleConfigPrefix)) !=0 ) { printf(" Failed!\n Setting smart config prefix failed, error: %X", rval); return; } printf(" Succeed\n"); printf(" Starting smart config..."); fflush(stdout); if ((rval = wlan_smart_config_start(0)) !=0 ) { printf(" Failed!\n Starting smart config failed, error: %X\n", rval); return; } printf(" Succeed\n"); if (!wait_on(30*MS_PER_SEC, &ulSmartConfigFinished, 1, " Waiting on Starting smart config done")) { printf(" Timed out waiting for Smart Config to finish. Hopefully it did anyway\n"); } printf(" Smart Config packet %s!\n",ulSmartConfigFinished ? "seen" : "NOT seen"); printf(" Enabling auto-connect policy..."); fflush(stdout); if ((rval=wlan_ioctl_set_connection_policy(DISABLE, DISABLE, ENABLE)) !=0 ) { printf(" Failed!\n Setting auto connection policy failed, error: %X\n", rval); return; } printf(" Succeed\n"); printf(" Stopping CC3000...\n"); fflush(stdout); wlan_stop(); /* No error returned here, so nothing to check */ printf(" Pausing for 2 seconds...\n"); usleep(2000000); printf(" Restarting CC3000... \n"); wlan_start(0); /* No error returned here, so nothing to check */ if (!wait_on(20*MS_PER_SEC, &ulCC3000Connected, 1, " Waiting for connection to AP")) { printf(" Timed out waiting for connection to AP\n"); return; } if (!wait_on(15*MS_PER_SEC, &ulCC3000DHCP, 1, " Waiting for IP address from DHCP")) { printf(" Timed out waiting for IP address from DHCP\n"); return; } printf(" Sending mDNS broadcast to signal we're done with Smart Config...\n"); fflush(stdout); /* The API documentation says mdnsAdvertiser() is supposed to return 0 on * success and SOC_ERROR on failure, but it looks like what it actually * returns is the socket number it used. So we ignore it. */ mdnsAdvertiser(1,device_name,strlen(device_name)); printf(" Smart Config finished Successfully!\n"); ShowInformation(); fflush(stdout); } /* This is an example of how you'd connect the CC3000 to an AP without using * Smart Config or a stored profile. * * All the code above wlan_connect() is just for this demo program; if you're * always going to connect to your network this way you wouldn't need it. */ void ManualConnect(void) { char ssidName[] = "YourAP"; char AP_KEY[] = "yourpass"; uint8_t rval; if (!isInitialized) { printf("CC3000 not initialized; can't run manual connect.\n"); return; } printf("Starting manual connect...\n"); printf(" Disabling auto-connect policy...\n"); rval = wlan_ioctl_set_connection_policy(DISABLE, DISABLE, DISABLE); printf(" Deleting all existing profiles...\n"); rval = wlan_ioctl_del_profile(255); wait_on(15*MS_PER_SEC, &ulCC3000Connected, 0, " Waiting until disconnected"); printf(" Manually connecting...\n"); /* Parameter 1 is the security type: WLAN_SEC_UNSEC, WLAN_SEC_WEP, * WLAN_SEC_WPA or WLAN_SEC_WPA2 * Parameter 3 is the MAC adddress of the AP. All the TI examples * use NULL. I suppose you would want to specify this * if you were security paranoid. */ rval = wlan_connect(WLAN_SEC_WPA2, ssidName, strlen(ssidName), NULL, (uint8_t *)AP_KEY, strlen(AP_KEY)); if (rval==0) { printf(" Manual connect success.\n"); } else { printf(" Unusual return value: %d\n", rval); } } /* This is an example of manually adding a WLAN profile to the CC3000. See * wlan_ioctl_set_connection_policy() for more details of how profiles are * used but basically there's 7 slots where you can store AP info and if * the connection policy is set to auto_start then the CC3000 will go * through its profile table and try to auto-connect to something it knows * about after it boots up. * * Note the API documentation for wlan_add_profile is wrong. It says it * returns 0 on success and -1 on failure. What it really returns is * the stored profile number (0-6, since the CC3000 can store 7) or * 255 on failure. * * Unfortunately the API doesn't give you any way to see how many profiles * are in use or which profile is stored in which slot, so if you want to * manage multiple profiles you'll need to do that yourself. */ void ManualAddProfile(void) { char ssidName[] = "YourAP"; char AP_KEY[] = "yourpass"; uint8_t rval; if (!isInitialized) { printf("CC3000 not initialized; can't run manual add profile."); return; } printf("Starting manual add profile...\n"); printf(" Disabling auto connection...\n"); wlan_ioctl_set_connection_policy(DISABLE, DISABLE, DISABLE); printf(" Adding profile...\n"); rval = wlan_add_profile ( WLAN_SEC_WPA2, /* WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2 */ (uint8_t *)ssidName, strlen(ssidName), NULL, /* BSSID, TI always uses NULL */ 0, /* Profile priority */ 0x18, /* Key length for WEP security, undocumented why this needs to be 0x18 */ 0x1e, /* Key index, undocumented why this needs to be 0x1e */ 0x2, /* key management, undocumented why this needs to be 2 */ (uint8_t *)AP_KEY, /* WPA security key */ strlen(AP_KEY) /* WPA security key length */ ); if (rval!=255) { /* This code is lifted from http://e2e.ti.com/support/low_power_rf/f/851/p/180859/672551.aspx; * the actual API documentation on wlan_add_profile doesn't specify any of this.... */ printf(" Manual add profile success, stored in profile: %d\n", rval); printf(" Enabling auto connection...\n"); wlan_ioctl_set_connection_policy(DISABLE, DISABLE, ENABLE); printf(" Stopping CC3000...\n"); wlan_stop(); printf(" Stopping for 5 seconds...\n"); usleep(5000000); printf(" Restarting CC3000...\n"); wlan_start(0); printf(" Manual add profile done!"); } else { printf(" Manual add profile failured (all profiles full?)."); } } /* The call wlan_ioctl_get_scan_results returns this structure. I couldn't * find it in the TI library so it's defined here. It's 50 bytes with * a semi weird arrangement but fortunately it's not as bad as it looks. * * numNetworksFound - 4 bytes - On the first call to wlan_ioctl_get_scan_results * this will be set to how many APs the CC3000 sees. Although * with 4 bytes the CC3000 could see 4 billion APs in my testing * this number was always 20 or less so there's probably an * internal memory limit. * * results - 4 bytes - 0=aged results, 1=results valid, 2=no results. Why TI * used 32 bits to store something that could be done in 2, * and how this field is different than isValid below, is * a mystery to me so I just igore this field completely. * * isValid & rssi - 1 byte - a packed structure. The top bit (isValid) * indicates whether or not this structure has valid data, * the bottom 7 bits (rssi) are the signal strength of this AP. * * securityMode & ssidLength - 1 byte - another packed structure. The top 2 * bits (securityMode) show how the AP is configured: * 0 - open / no security * 1 - WEP * 2 - WPA * 3 - WPA2 * ssidLength is the lower 6 bytes and shows how many characters * (up to 32) of the ssid_name field are valid * * frameTime - 2 bytes - how long, in seconds, since the CC3000 saw this AP * beacon * * ssid_name - 32 bytes - The ssid name for this AP. Note that this isn't a * regular null-terminated C string so you can't use it * directly with a strcpy() or Serial.println() etc. and you'll * need a 33-byte string to store it (32 valid characters + * null terminator) * * bssid - 6 bytes - the MAC address of this AP */ typedef struct scanResults { unsigned long numNetworksFound; unsigned long results; unsigned isValid:1; unsigned rssi:7; unsigned securityMode:2; unsigned ssidLength:6; uint16_t frameTime; uint8_t ssid_name[32]; uint8_t bssid[6]; } scanResults; #define NUM_CHANNELS 16 void ListAccessPoints(void) { unsigned long aiIntervalList[NUM_CHANNELS]; uint8_t rval; scanResults sr; int apCounter, i; char localB[33]; if (!isInitialized) { printf("CC3000 not initialized; can't list access points.\n"); return; } printf("List visible access points\n"); printf(" Setting scan paramters...\n"); for (i=0; i0) { if ((rval=wlan_ioctl_get_scan_results(2000, (uint8_t *)&sr)) !=0 ) { printf(" Got back unusual result from wlan_ioctl_get scan, can't continue: %d\n", rval); return; } } } while (apCounter>0); printf(" Access Point list finished.\n"); } void PrintIPBytes(uint8_t *ipBytes) { printf("%d.%d.%d.%d\n", ipBytes[3], ipBytes[2], ipBytes[1], ipBytes[0]); } /* All the data in all the fields from netapp_ipconfig() are reversed, * e.g. an IP address is read via bytes 3,2,1,0 instead of bytes * 0,1,2,3 and the MAC address is read via bytes 5,4,3,2,1,0 instead * of 0,1,2,3,4,5. * * N.B. TI is inconsistent here; nvmem_get_mac_address() returns them in * the right order etc. */ void ShowInformation(void) { tNetappIpconfigRetArgs inf; char localB[33]; int i; if (!isInitialized) { printf("CC3000 not initialized; can't get information.\n"); return; } printf("CC3000 information:\n"); netapp_ipconfig(&inf); printf(" IP address: "); PrintIPBytes(inf.aucIP); printf(" Subnet mask: "); PrintIPBytes(inf.aucSubnetMask); printf(" Gateway: "); PrintIPBytes(inf.aucDefaultGateway); printf(" DHCP server: "); PrintIPBytes(inf.aucDHCPServer); printf(" DNS server: "); PrintIPBytes(inf.aucDNSServer); printf(" MAC address: "); for (i=(MAC_ADDR_LEN-1); i>=0; i--) { if (i!=(MAC_ADDR_LEN-1)) { printf(":"); } printf("%X", inf.uaMacAddr[i]); } printf("\n"); memset(localB, 0, sizeof(localB)); strncpy(localB, (char*)inf.uaSSID,sizeof(localB)); printf(" Connected to SSID: %s\n", localB); } int c3b_main(int argc, char *argv[]) { char ch='0'; do { helpme(); ch = getchar(); } while(execute(ch) == 0); return 0; }