/**************************************************************************** * apps/testing/mm/mm_main.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include /* Include nuttx/mm/mm_heap/mm.h */ #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define NTEST_ALLOCS 32 /* #define STOP_ON_ERRORS do {} while (0) */ #define STOP_ON_ERRORS exit(1) /**************************************************************************** * Private Data ****************************************************************************/ /* Test allocations */ static const int g_alloc_sizes[NTEST_ALLOCS] = { 1024, 12, 962, 5692, 10254, 111, 9932, 601, 222, 2746, 3, 124321, 68, 776, 6750, 852, 4732, 28, 901, 480, 5011, 1536, 2011, 81647, 646, 1646, 69179, 194, 2590, 7, 969, 70 }; static const int g_realloc_sizes[NTEST_ALLOCS] = { 18, 3088, 963, 123, 511, 11666, 3723, 42, 9374, 1990, 1412, 6, 592, 4088, 11, 5040, 8663, 91255, 28, 4346, 9172, 168, 229, 4734, 59139, 221, 7830, 30421, 1666, 4, 812, 416 }; static const int g_random1[NTEST_ALLOCS] = { 20, 11, 3, 31, 9, 29, 7, 17, 21, 2, 26, 18, 14, 25, 0, 10, 27, 19, 22, 28, 8, 30, 12, 15, 4, 1, 24, 6, 16, 13, 5, 23 }; static const int g_random2[NTEST_ALLOCS] = { 2, 19, 12, 23, 30, 11, 27, 4, 20, 7, 0, 16, 28, 15, 5, 24, 10, 17, 25, 31, 8, 29, 3, 26, 9, 18, 22, 13, 1, 21, 14, 6 }; static const int g_random3[NTEST_ALLOCS] = { 8, 17, 3, 18, 26, 23, 30, 11, 12, 22, 4, 20, 25, 10, 27, 1, 29, 14, 19, 21, 0, 31, 7, 24, 9, 15, 2, 28, 16, 6, 13, 5 }; static const int g_alignment[NTEST_ALLOCS / 2] = { 128, 2048, 131072, 8192, 32, 32768, 16384 , 262144, 512, 4096, 65536, 8, 64, 1024, 16, 4 }; static FAR void *g_allocs[NTEST_ALLOCS]; static struct mallinfo g_alloc_info; static dq_queue_t g_realloc_queue; /**************************************************************************** * Private Functions ****************************************************************************/ static void mm_showmallinfo(void) { g_alloc_info = mallinfo(); printf(" mallinfo:\n"); printf(" Total space allocated from system = %lu\n", (unsigned long)g_alloc_info.arena); printf(" Number of non-inuse chunks = %lu\n", (unsigned long)g_alloc_info.ordblks); printf(" Largest non-inuse chunk = %lu\n", (unsigned long)g_alloc_info.mxordblk); printf(" Total allocated space = %lu\n", (unsigned long)g_alloc_info.uordblks); printf(" Total non-inuse space = %lu\n", (unsigned long)g_alloc_info.fordblks); } static void do_mallocs(FAR void **mem, FAR const int *size, FAR const int *seq, int n) { int i; int j; for (i = 0; i < n; i++) { j = seq[i]; if (!mem[j]) { printf("(%d)Allocating %d bytes\n", i, size[j]); mem[j] = malloc(size[j]); printf("(%d)Memory allocated at %p\n", i, mem[j]); if (mem[j] == NULL) { int allocsize = MM_ALIGN_UP(size[j] + SIZEOF_MM_ALLOCNODE); fprintf(stderr, "(%d)malloc failed for allocsize=%d\n", i, allocsize); if (allocsize > g_alloc_info.mxordblk) { fprintf(stderr, " Normal, largest free block is only %lu\n", (unsigned long)g_alloc_info.mxordblk); } else { fprintf(stderr, " ERROR largest free block is %lu\n", (unsigned long)g_alloc_info.mxordblk); exit(1); } } else { memset(mem[j], 0xaa, size[j]); } mm_showmallinfo(); } } } static void do_reallocs(FAR void **mem, FAR const int *oldsize, FAR const int *newsize, FAR const int *seq, int n) { int i; int j; void *ptr; for (i = 0; i < n; i++) { j = seq[i]; printf("(%d)Re-allocating at %p from %d to %d bytes\n", i, mem[j], oldsize[j], newsize[j]); /* Return null if realloc failed, so using a local variable to store * the return value to avoid the missing of old memory pointer. */ ptr = realloc(mem[j], newsize[j]); if (ptr != NULL) { mem[j] = ptr; } printf("(%d)Memory re-allocated at %p\n", i, ptr); if (ptr == NULL) { int allocsize = MM_ALIGN_UP(newsize[j] + SIZEOF_MM_ALLOCNODE); fprintf(stderr, "(%d)realloc failed for allocsize=%d\n", i, allocsize); if (allocsize > g_alloc_info.mxordblk) { fprintf(stderr, " Normal, largest free block is only %lu\n", (unsigned long)g_alloc_info.mxordblk); } else { fprintf(stderr, " ERROR largest free block is %lu\n", (unsigned long)g_alloc_info.mxordblk); exit(1); } } else { memset(mem[j], 0x55, newsize[j]); } mm_showmallinfo(); } } static void do_memaligns(FAR void **mem, FAR const int *size, FAR const int *align, FAR const int *seq, int n) { int i; int j; for (i = 0; i < n; i++) { j = seq[i]; printf("(%d)Allocating %d bytes aligned to 0x%08x\n", i, size[j], align[i]); mem[j] = memalign(align[i], size[j]); printf("(%d)Memory allocated at %p\n", i, mem[j]); if (mem[j] == NULL) { int allocsize = MM_ALIGN_UP(size[j] + SIZEOF_MM_ALLOCNODE) + 2 * align[i]; fprintf(stderr, "(%d)memalign failed for allocsize=%d\n", i, allocsize); if (allocsize > g_alloc_info.mxordblk) { fprintf(stderr, " Normal, largest free block is only %lu\n", (unsigned long)g_alloc_info.mxordblk); } else { fprintf(stderr, " ERROR largest free block is %lu\n", (unsigned long)g_alloc_info.mxordblk); exit(1); } } else { memset(mem[j], 0x33, size[j]); } mm_showmallinfo(); } } static void do_frees(FAR void **mem, FAR const int *size, FAR const int *seq, int n) { int i; int j; for (i = 0; i < n; i++) { j = seq[i]; printf("(%d)Releasing memory at %p (size=%d bytes)\n", i, mem[j], size[j]); free(mem[j]); mem[j] = NULL; mm_showmallinfo(); } } static void realloc_boundary_free(void) { dq_entry_t *tail; /* Free all the memory in the relloc queue */ printf("Free all the memory in the relloc queue\n"); while (!dq_empty(&g_realloc_queue)) { tail = dq_remlast(&g_realloc_queue); if (tail != NULL) { free(tail); } else { DEBUGASSERT(false); } } } static void *realloc_boundary_malloc(int *nodesize) { int size; int index; void *ptr = NULL; DEBUGASSERT(nodesize); *nodesize = 0; g_alloc_info = mallinfo(); if (g_alloc_info.mxordblk < MM_MIN_CHUNK) { size = MM_MIN_CHUNK; } else { /* Get a a suitable size to make sure function * realloc_boundary_malloc() can run twice. */ index = fls(g_alloc_info.mxordblk); size = 1 << (index - 1); size = (size < MM_MIN_CHUNK) ? MM_MIN_CHUNK : size; } /* Continuously mallocing util success or heap ran out */ while (ptr == NULL && size >= MM_MIN_CHUNK) { ptr = malloc(size - SIZEOF_MM_ALLOCNODE); if (ptr) { *nodesize = size; } else { size = size >> 1; } } if (ptr) { printf("malloc success, ptr=%p, mem node size=%d\n", ptr, size); } else { printf("malloc failed, size=%d\n", (size << 1) - SIZEOF_MM_ALLOCNODE); } return ptr; } static void realloc_boundary(void) { dq_entry_t *prev_ptr2 = NULL; dq_entry_t *prev_ptr1 = NULL; dq_entry_t *prev_ptr0 = NULL; int prev_size2 = 0; int prev_size1 = 0; int prev_size0 = 0; int reallocsize; /* The (MM_MIN_CHUNK - SIZEOF_MM_ALLOCNODE) must >= sizeof(dq_entry_t), * so all the malloced memory can hold dq_entry_t. */ DEBUGASSERT(sizeof(dq_entry_t) <= (MM_MIN_CHUNK - SIZEOF_MM_ALLOCNODE)); printf("memory realloc_boundary test start.\n"); printf("MM_MIN_CHUNK=%d, SIZEOF_MM_ALLOCNODE=%d\n", MM_MIN_CHUNK, SIZEOF_MM_ALLOCNODE); /* Malloc memory until the memeory ran out */ while (1) { prev_ptr0 = (dq_entry_t *)realloc_boundary_malloc(&prev_size0); if (prev_ptr0 == NULL) { break; } /* Add all the malloced memory into the queue, so we can free * them conveniently after test finished. */ dq_addlast(prev_ptr0 , &g_realloc_queue); /* Make sure prev_ptr1 and prev_ptr2 are at the bottom of heap */ if (prev_ptr0 > prev_ptr1) { prev_size2 = prev_size1; prev_ptr2 = prev_ptr1; prev_size1 = prev_size0; prev_ptr1 = prev_ptr0; } } /* Free the previous 1 memory node. There will be only one freed memory * node in the heap. */ printf("free the previous 1 memory node, addr: 0x%p\n", prev_ptr1); if (prev_ptr1 != NULL) { dq_rem(prev_ptr1, &g_realloc_queue); free(prev_ptr1); } else { /* Free all malloced memory */ realloc_boundary_free(); exit(1); } reallocsize = prev_size1 + prev_size2 - SIZEOF_MM_ALLOCNODE; printf("realloc the previous 2 memory node: \n"); printf("reallocsize = %d, reallocptr = %p\n", reallocsize, prev_ptr2); /* Realloc reallocsize, the actual memory occupation in heap is * prev_size1 + prev_size2, rest memory size in the heap * is: * if MM_MIN_CHUNK >= 2 * SIZEOF_MM_ALLOCNODE * REST = MM_MIN_CHUNK - 2 * SIZEOF_MM_ALLOCNODE * if MM_MIN_CHUNK < 2 * SIZEOF_MM_ALLOCNODE * REST = 2 * MM_MIN_CHUNK - 2 * SIZEOF_MM_ALLOCNODE * If REST < SIZEOF_MM_FREENODE, software will assert fail in * mm_heap/mm_realloc.c line: 319. */ prev_ptr0 = realloc(prev_ptr2, reallocsize); if (prev_ptr0 != NULL) { printf("realloc success\n"); } else { printf("realloc fail\n"); } /* Free all malloced memory */ realloc_boundary_free(); } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: mm_main ****************************************************************************/ int main(int argc, FAR char *argv[]) { mm_showmallinfo(); /* Memory boundary realloc test */ realloc_boundary(); mm_showmallinfo(); /* Allocate some memory */ do_mallocs(g_allocs, g_alloc_sizes, g_random1, NTEST_ALLOCS); /* Re-allocate the memory */ do_reallocs(g_allocs, g_alloc_sizes, g_realloc_sizes, g_random2, NTEST_ALLOCS); /* Release the memory */ do_frees(g_allocs, g_realloc_sizes, g_random3, NTEST_ALLOCS); /* Allocate aligned memory */ do_memaligns(g_allocs, g_alloc_sizes, g_alignment, g_random2, NTEST_ALLOCS / 2); do_memaligns(g_allocs, g_alloc_sizes, g_alignment, &g_random2[NTEST_ALLOCS / 2], NTEST_ALLOCS / 2); /* Release aligned memory */ do_frees(g_allocs, g_alloc_sizes, g_random1, NTEST_ALLOCS); printf("TEST COMPLETE\n"); return 0; }