/**************************************************************************** * apps/modbus/ascii/mbascii.c * * FreeModbus Library: A portable Modbus implementation for Modbus ASCII/RTU. * Copyright (c) 2006 Christian Walter * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include "port.h" #include "modbus/mb.h" #include "modbus/mbframe.h" #include "modbus/mbport.h" #include "mbascii.h" #include "mbcrc.h" #ifdef CONFIG_MB_ASCII_ENABLED /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define MB_ASCII_DEFAULT_CR '\r' /* Default CR character for Modbus ASCII. */ #define MB_ASCII_DEFAULT_LF '\n' /* Default LF character for Modbus ASCII. */ #define MB_SER_PDU_SIZE_MIN 3 /* Minimum size of a Modbus ASCII frame. */ #define MB_SER_PDU_SIZE_MAX 256 /* Maximum size of a Modbus ASCII frame. */ #define MB_SER_PDU_SIZE_LRC 1 /* Size of LRC field in PDU. */ #define MB_SER_PDU_ADDR_OFF 0 /* Offset of slave address in Ser-PDU. */ #define MB_SER_PDU_PDU_OFF 1 /* Offset of Modbus-PDU in Ser-PDU. */ /**************************************************************************** * Private Type Definitions ****************************************************************************/ typedef enum { STATE_RX_IDLE, /* Receiver is in idle state. */ STATE_RX_RCV, /* Frame is beeing received. */ STATE_RX_WAIT_EOF /* Wait for End of Frame. */ } eMBRcvState; typedef enum { STATE_TX_IDLE, /* Transmitter is in idle state. */ STATE_TX_START, /* Starting transmission (':' sent). */ STATE_TX_DATA, /* Sending of data (Address, Data, LRC). */ STATE_TX_END, /* End of transmission. */ STATE_TX_NOTIFY /* Notify sender that the frame has been sent. */ } eMBSndState; typedef enum { BYTE_HIGH_NIBBLE, /* Character for high nibble of byte. */ BYTE_LOW_NIBBLE /* Character for low nibble of byte. */ } eMBBytePos; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ static uint8_t prvucMBint8_t2BIN(uint8_t ucCharacter); static uint8_t prvucMBBIN2int8_t(uint8_t ucByte); static uint8_t prvucMBLRC(uint8_t *pucFrame, uint16_t usLen); /**************************************************************************** * Private Data ****************************************************************************/ static volatile eMBSndState eSndState; static volatile eMBRcvState eRcvState; /* We reuse the Modbus RTU buffer because only one buffer is needed and the * RTU buffer is bigger. */ extern volatile uint8_t ucRTUBuf[]; static volatile uint8_t *ucASCIIBuf = ucRTUBuf; static volatile uint16_t usRcvBufferPos; static volatile eMBBytePos eBytePos; static volatile uint8_t *pucSndBufferCur; static volatile uint16_t usSndBufferCount; static volatile uint8_t ucLRC; static volatile uint8_t ucMBLFCharacter; /**************************************************************************** * Private Functions ****************************************************************************/ static uint8_t prvucMBint8_t2BIN(uint8_t ucCharacter) { if ((ucCharacter >= '0') && (ucCharacter <= '9')) { return (uint8_t)(ucCharacter - '0'); } else if ((ucCharacter >= 'A') && (ucCharacter <= 'F')) { return (uint8_t)(ucCharacter - 'A' + 0x0A); } else { return 0xFF; } } static uint8_t prvucMBBIN2int8_t(uint8_t ucByte) { if (ucByte <= 0x09) { return (uint8_t)('0' + ucByte); } else if ((ucByte >= 0x0A) && (ucByte <= 0x0F)) { return (uint8_t)(ucByte - 0x0A + 'A'); } else { /* Programming error. */ ASSERT(0); } return '0'; } static uint8_t prvucMBLRC(uint8_t * pucFrame, uint16_t usLen) { uint8_t ucLocalLRC = 0; /* LRC char initialized */ while (usLen--) { ucLocalLRC += *pucFrame++; /* Add buffer byte without carry */ } /* Return twos complement */ ucLocalLRC = (uint8_t) (-((int8_t) ucLocalLRC)); return ucLocalLRC; } /**************************************************************************** * Public Functions ****************************************************************************/ eMBErrorCode eMBASCIIInit(uint8_t ucSlaveAddress, uint8_t ucPort, speed_t ulBaudRate, eMBParity eParity) { eMBErrorCode eStatus = MB_ENOERR; (void)ucSlaveAddress; ENTER_CRITICAL_SECTION(); ucMBLFCharacter = MB_ASCII_DEFAULT_LF; if (xMBPortSerialInit(ucPort, ulBaudRate, 7, eParity) != true) { eStatus = MB_EPORTERR; } else if (xMBPortTimersInit(CONFIG_MB_ASCII_TIMEOUT_SEC * 20000UL) != true) { eStatus = MB_EPORTERR; } EXIT_CRITICAL_SECTION(); return eStatus; } void eMBASCIIStart(void) { ENTER_CRITICAL_SECTION(); vMBPortSerialEnable(true, false); eRcvState = STATE_RX_IDLE; EXIT_CRITICAL_SECTION(); /* No special startup required for ASCII. */ (void)xMBPortEventPost(EV_READY); } void eMBASCIIStop(void) { ENTER_CRITICAL_SECTION(); vMBPortSerialEnable(false, false); vMBPortTimersDisable(); EXIT_CRITICAL_SECTION(); } eMBErrorCode eMBASCIIReceive(uint8_t *pucRcvAddress, uint8_t **pucFrame, uint16_t *pusLength) { eMBErrorCode eStatus = MB_ENOERR; ENTER_CRITICAL_SECTION(); ASSERT(usRcvBufferPos < MB_SER_PDU_SIZE_MAX); /* Length and CRC check */ if ((usRcvBufferPos >= MB_SER_PDU_SIZE_MIN) && (prvucMBLRC((uint8_t *) ucASCIIBuf, usRcvBufferPos) == 0)) { /* Save the address field. All frames are passed to the upper layed * and the decision if a frame is used is done there. */ *pucRcvAddress = ucASCIIBuf[MB_SER_PDU_ADDR_OFF]; /* Total length of Modbus-PDU is Modbus-Serial-Line-PDU minus * size of address field and CRC checksum. */ *pusLength = (uint16_t)(usRcvBufferPos - MB_SER_PDU_PDU_OFF - MB_SER_PDU_SIZE_LRC); /* Return the start of the Modbus PDU to the caller. */ *pucFrame = (uint8_t *) & ucASCIIBuf[MB_SER_PDU_PDU_OFF]; } else { eStatus = MB_EIO; } EXIT_CRITICAL_SECTION(); return eStatus; } eMBErrorCode eMBASCIISend(uint8_t ucSlaveAddress, const uint8_t *pucFrame, uint16_t usLength) { eMBErrorCode eStatus = MB_ENOERR; uint8_t usLRC; ENTER_CRITICAL_SECTION(); /* Check if the receiver is still in idle state. If not we where too * slow with processing the received frame and the master sent another * frame on the network. We have to abort sending the frame. */ if (eRcvState == STATE_RX_IDLE) { /* First byte before the Modbus-PDU is the slave address. */ pucSndBufferCur = (uint8_t *) pucFrame - 1; usSndBufferCount = 1; /* Now copy the Modbus-PDU into the Modbus-Serial-Line-PDU. */ pucSndBufferCur[MB_SER_PDU_ADDR_OFF] = ucSlaveAddress; usSndBufferCount += usLength; /* Calculate LRC checksum for Modbus-Serial-Line-PDU. */ usLRC = prvucMBLRC((uint8_t *) pucSndBufferCur, usSndBufferCount); ucASCIIBuf[usSndBufferCount++] = usLRC; /* Activate the transmitter. */ eSndState = STATE_TX_START; vMBPortSerialEnable(false, true); } else { eStatus = MB_EIO; } EXIT_CRITICAL_SECTION(); return eStatus; } bool xMBASCIIReceiveFSM(void) { bool xNeedPoll = false; uint8_t ucByte; uint8_t ucResult; ASSERT(eSndState == STATE_TX_IDLE); (void)xMBPortSerialGetByte((int8_t *) & ucByte); switch (eRcvState) { /* A new character is received. If the character is a ':' the input * buffer is cleared. A CR-character signals the end of the data * block. Other characters are part of the data block and their * ASCII value is converted back to a binary representation. */ case STATE_RX_RCV: /* Enable timer for character timeout. */ vMBPortTimersEnable(); if (ucByte == ':') { /* Empty receive buffer. */ eBytePos = BYTE_HIGH_NIBBLE; usRcvBufferPos = 0; } else if (ucByte == MB_ASCII_DEFAULT_CR) { eRcvState = STATE_RX_WAIT_EOF; } else { ucResult = prvucMBint8_t2BIN(ucByte); switch (eBytePos) { /* High nibble of the byte comes first. We check for * a buffer overflow here. */ case BYTE_HIGH_NIBBLE: if (usRcvBufferPos < MB_SER_PDU_SIZE_MAX) { ucASCIIBuf[usRcvBufferPos] = (uint8_t)(ucResult << 4); eBytePos = BYTE_LOW_NIBBLE; break; } else { /* not handled in Modbus specification but seems * a resonable implementation. */ eRcvState = STATE_RX_IDLE; /* Disable previously activated timer because of error state. */ vMBPortTimersDisable(); } break; case BYTE_LOW_NIBBLE: ucASCIIBuf[usRcvBufferPos] |= ucResult; usRcvBufferPos++; eBytePos = BYTE_HIGH_NIBBLE; break; } } break; case STATE_RX_WAIT_EOF: if (ucByte == ucMBLFCharacter) { /* Disable character timeout timer because all characters are * received. */ vMBPortTimersDisable(); /* Receiver is again in idle state. */ eRcvState = STATE_RX_IDLE; /* Notify the caller of eMBASCIIReceive that a new frame * was received. */ xNeedPoll = xMBPortEventPost(EV_FRAME_RECEIVED); } else if (ucByte == ':') { /* Empty receive buffer and back to receive state. */ eBytePos = BYTE_HIGH_NIBBLE; usRcvBufferPos = 0; eRcvState = STATE_RX_RCV; /* Enable timer for character timeout. */ vMBPortTimersEnable(); } else { /* Frame is not okay. Delete entire frame. */ eRcvState = STATE_RX_IDLE; } break; case STATE_RX_IDLE: if (ucByte == ':') { /* Enable timer for character timeout. */ vMBPortTimersEnable(); /* Reset the input buffers to store the frame. */ usRcvBufferPos = 0;; eBytePos = BYTE_HIGH_NIBBLE; eRcvState = STATE_RX_RCV; } break; } return xNeedPoll; } bool xMBASCIITransmitFSM(void) { bool xNeedPoll = false; uint8_t ucByte; ASSERT(eRcvState == STATE_RX_IDLE); switch (eSndState) { /* Start of transmission. The start of a frame is defined by sending * the character ':'. */ case STATE_TX_START: ucByte = ':'; xMBPortSerialPutByte((int8_t)ucByte); eSndState = STATE_TX_DATA; eBytePos = BYTE_HIGH_NIBBLE; break; /* Send the data block. Each data byte is encoded as a character hex * stream with the high nibble sent first and the low nibble sent * last. If all data bytes are exhausted we send a '\r' character * to end the transmission. */ case STATE_TX_DATA: if (usSndBufferCount > 0) { switch (eBytePos) { case BYTE_HIGH_NIBBLE: ucByte = prvucMBBIN2int8_t((uint8_t)(*pucSndBufferCur >> 4)); xMBPortSerialPutByte((int8_t) ucByte); eBytePos = BYTE_LOW_NIBBLE; break; case BYTE_LOW_NIBBLE: ucByte = prvucMBBIN2int8_t((uint8_t)(*pucSndBufferCur & 0x0F)); xMBPortSerialPutByte((int8_t)ucByte); pucSndBufferCur++; eBytePos = BYTE_HIGH_NIBBLE; usSndBufferCount--; break; } } else { xMBPortSerialPutByte(MB_ASCII_DEFAULT_CR); eSndState = STATE_TX_END; } break; /* Finish the frame by sending a LF character. */ case STATE_TX_END: xMBPortSerialPutByte((int8_t)ucMBLFCharacter); /* We need another state to make sure that the CR character has * been sent. */ eSndState = STATE_TX_NOTIFY; break; /* Notify the task which called eMBASCIISend that the frame has * been sent. */ case STATE_TX_NOTIFY: eSndState = STATE_TX_IDLE; xNeedPoll = xMBPortEventPost(EV_FRAME_SENT); /* Disable transmitter. This prevents another transmit buffer * empty interrupt. */ vMBPortSerialEnable(true, false); eSndState = STATE_TX_IDLE; break; /* We should not get a transmitter event if the transmitter is in * idle state. */ case STATE_TX_IDLE: /* enable receiver/disable transmitter. */ vMBPortSerialEnable(true, false); break; } return xNeedPoll; } bool xMBASCIITimerT1SExpired(void) { switch (eRcvState) { /* If we have a timeout we go back to the idle state and wait for * the next frame. */ case STATE_RX_RCV: case STATE_RX_WAIT_EOF: eRcvState = STATE_RX_IDLE; break; default: ASSERT((eRcvState == STATE_RX_RCV) || (eRcvState == STATE_RX_WAIT_EOF)); break; } vMBPortTimersDisable(); /* no context switch required. */ return false; } #endif