diff --git a/CMSIS_5/CMSIS/NN/Include/arm_nnfunctions_nnabla.h CMSIS_5/CMSIS/NN/Include/arm_nnfunctions_nnabla.h ===CHANGE_NOTICE(1/5)=========================================================== Sony Corporation added this file to 5.4.0 to add the following function prototypes: - arm_convolve_CHW_f32_basic_nonsquare() - arm_convolve_CHW_q15_basic_nonsquare() - arm_convolve_CHW_q7_basic_nonsquare() - arm_nn_CHW_mat_mult_kernel_q7_q15() ================================================================================ --- /dev/null +++ CMSIS_5/CMSIS/NN/Include/arm_nnfunctions_nnabla.h @@ -0,0 +1,217 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * Copyright 2018 Sony Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Title: arm_nnfunctions_nnabla.h + * Author: Sony Corporation + * Description: Sony Corporation added this file to 5.4.0 + * to add the following function prototypes: + * - arm_convolve_CHW_f32_basic_nonsquare() + * - arm_convolve_CHW_q15_basic_nonsquare() + * - arm_convolve_CHW_q7_basic_nonsquare() + * - arm_nn_CHW_mat_mult_kernel_q7_q15() + * $Date: 14. September 2018 + * -------------------------------------------------------------------- */ + +#ifndef _ARM_NNFUNCTIONS_CHW_H +#define _ARM_NNFUNCTIONS_CHW_H + +#include "arm_nnsupportfunctions.h" +#include "arm_nn_tables.h" + +#define USE_INTRINSIC + +//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ + +#ifdef __cplusplus +extern "C" +{ +#endif + + /** + * @brief Basic float32 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + + arm_status + arm_convolve_CHW_f32_basic_nonsquare(const float * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const float * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const float * bias, + float * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + float * bufferA, + float * bufferB); + + + /** + * @brief Basic Q15 version of CHW convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + + arm_status + arm_convolve_CHW_q15_basic_nonsquare(const q15_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Basic Q7 version of CHW convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + + arm_status + arm_convolve_CHW_q7_basic_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Matrix-multiplication function for convolution with CHW output + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] out_stride output buffer channel stride + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + * + * @details + * + * This function does the matrix multiplication with weight matrix + * and 2 columns from im2col. + */ + + q7_t *arm_nn_CHW_mat_mult_kernel_q7_q15(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t out_stride, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut); + +#ifdef __cplusplus +} +#endif +#endif diff --git a/CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_f32_basic_nonsquare.c CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_f32_basic_nonsquare.c ===CHANGE_NOTICE(2/5)=========================================================== Sony Corporation added this file to 5.4.0 for these reasons: - support float version of convolution - support the CHW tensor layout ================================================================================ --- /dev/null +++ CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_f32_basic_nonsquare.c @@ -0,0 +1,207 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * Copyright 2018 Sony Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Title: arm_convolve_CHW_f32_basic_nonsquare.c + * Author: Sony Corporation + * Description: Sony Corporation added this file to 5.4.0 for these reasons: + * - support float version of convolution + * - support the CHW tensor layout + * $Date: 14. September 2018 + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions_nnabla.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic float32 version of CHW convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * bufferA size: ch_im_in*dim_kernel_x*dim_kernel_y + * + * bufferB size: 0 + * + * This basic version is designed to work for any input tensor and weight + * dimension. + */ + +arm_status +arm_convolve_CHW_f32_basic_nonsquare(const float * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const float * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const float * bias, + float * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + float * bufferA, + float * bufferB) +{ + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + int16_t i_ker_x_begin, i_ker_y_begin; + int16_t i_ker_x_end, i_ker_y_end; + int16_t single_in_map_size = dim_im_in_x * dim_im_in_y; + int16_t kernel_size_2d = dim_kernel_x * dim_kernel_y; + + uint16_t im2col_out_pixel_index = 0; + float *pBuffer = bufferA; + float *im_buffer = bufferA; + const float *pA; + int i; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + i_ker_y_begin = i_out_y * stride_y - padding_y; + i_ker_y_end = i_ker_y_begin + dim_kernel_y; + + for (i_ker_y = i_ker_y_begin; i_ker_y < i_ker_y_end; i_ker_y++) + { + i_ker_x_begin = i_out_x * stride_x - padding_x; + i_ker_x_end = i_ker_x_begin + dim_kernel_x; + + for (i_ker_x = i_ker_x_begin; i_ker_x < i_ker_x_end; i_ker_x++) + { + float *pDest = pBuffer + (i_ker_y - i_ker_y_begin) * dim_kernel_x + (i_ker_x - i_ker_x_begin); + float *pDestEnd = pDest + ch_im_in * kernel_size_2d; + + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* Out of bound zero values */ + for (; pDest < pDestEnd;) + { + *pDest = 0; + pDest += kernel_size_2d; + } + } else + { + const float *pSrc = Im_in + i_ker_y * dim_im_in_x + i_ker_x; + for (; pDest < pDestEnd;) + { + *pDest = *pSrc; + pSrc += single_in_map_size; + pDest += kernel_size_2d; + } + } + } + } + + pA = wt; + float *pOut = Im_out++; + int16_t map_size_out = dim_im_out_x * dim_im_out_y; + for (i = 0; i < ch_im_out; i++) + { + float sum = 0; + float *pB = im_buffer; + uint16_t colCnt = (ch_im_in * dim_kernel_x * dim_kernel_y) >> 2; + + if (bias) + { + sum = bias[i]; + } + + while (colCnt) + { + float inA1 = *pA++; + float inB1 = *pB++; + float inA2 = *pA++; + float inB2 = *pB++; + + sum += inA1 * inB1; + sum += inA2 * inB2; + + inA1 = *pA++; + inB1 = *pB++; + inA2 = *pA++; + inB2 = *pB++; + + sum += inA1 * inB1; + sum += inA2 * inB2; + + colCnt--; + } + colCnt = (ch_im_in * dim_kernel_x * dim_kernel_y) & 0x3; + while (colCnt) + { + float inA1 = *pA++; + float inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = sum; + pOut += map_size_out; + } + + /* counter reset */ + pBuffer = im_buffer; + im2col_out_pixel_index++; + } + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_q15_basic_nonsquare.c CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_q15_basic_nonsquare.c ===CHANGE_NOTICE(3/5)=========================================================== Sony Corporation added this file to 5.4.0 to support the CHW tensor layout ================================================================================ --- /dev/null +++ CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_q15_basic_nonsquare.c @@ -0,0 +1,231 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * Copyright 2018 Sony Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Title: arm_convolve_CHW_q15_basic_nonsquare.c + * Author: Sony Corporation + * Description: Sony Corporation added this file to 5.4.0 + * to support the CHW tensor layout + * $Date: 14. September 2018 + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions_nnabla.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q15 version of CHW convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * bufferA size: ch_im_in*dim_kernel_x*dim_kernel_y + * + * bufferB size: 0 + * + * This basic version is designed to work for any input tensor and weight + * dimension. + */ + +arm_status +arm_convolve_CHW_q15_basic_nonsquare(const q15_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + int16_t i_ker_x_begin, i_ker_y_begin; + int16_t i_ker_x_end, i_ker_y_end; + int16_t single_in_map_size = dim_im_in_x * dim_im_in_y; + int16_t kernel_size_2d = dim_kernel_x * dim_kernel_y; + + uint16_t im2col_out_pixel_index = 0; + q15_t *pBuffer = bufferA; + q15_t *im_buffer = bufferA; + const q15_t *pA; + int i; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { +#define USE_CHW_IN_COL +#ifdef USE_CHW_IN_COL + + i_ker_y_begin = i_out_y * stride_y - padding_y; + i_ker_y_end = i_ker_y_begin + dim_kernel_y; + + for (i_ker_y = i_ker_y_begin; i_ker_y < i_ker_y_end; i_ker_y++) + { + i_ker_x_begin = i_out_x * stride_x - padding_x; + i_ker_x_end = i_ker_x_begin + dim_kernel_x; + + for (i_ker_x = i_ker_x_begin; i_ker_x < i_ker_x_end; i_ker_x++) + { + q15_t *pDest = pBuffer + (i_ker_y - i_ker_y_begin) * dim_kernel_x + (i_ker_x - i_ker_x_begin); + q15_t *pDestEnd = pDest + ch_im_in * kernel_size_2d; + + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* Out of bound zero values */ + for (; pDest < pDestEnd;) + { + *pDest = 0; + pDest += kernel_size_2d; + } + } else + { + const q15_t *pSrc = Im_in + i_ker_y * dim_im_in_x + i_ker_x; + for (; pDest < pDestEnd;) + { + *pDest = *pSrc; + pSrc += single_in_map_size; + pDest += kernel_size_2d; + } + } + } + } +#else + // HWC in columns + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_y) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* load CHW patch to HWC column */ + const q15_t *pSrc = Im_in + i_ker_y * dim_im_in_x + i_ker_x; + for (int16_t ch_idx = 0; ch_idx < ch_im_in; ch_idx++) + { + pBuffer[ch_idx++] = *pSrc; + pSrc += single_in_map_size; + } + } + + pBuffer += ch_im_in; + } + } +#endif + + pA = wt; + q15_t *pOut = Im_out++; + int16_t map_size_out = dim_im_out_x * dim_im_out_y; + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = 0; + q15_t *pB = im_buffer; + uint16_t colCnt = (ch_im_in * dim_kernel_x * dim_kernel_y) >> 2; + + if (bias) + { + sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + } + + while (colCnt) + { + q31_t inA1 = *__SIMD32(pA)++; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inA2 = *__SIMD32(pA)++; + q31_t inB2 = *__SIMD32(pB)++; + + sum = __SMLAD(inA1, inB1, sum); + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = (ch_im_in * dim_kernel_x * dim_kernel_y) & 0x3; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q15_t) __SSAT((sum >> out_shift), 16); + pOut += map_size_out; + } + + /* counter reset */ + pBuffer = im_buffer; + im2col_out_pixel_index++; + } + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_q7_basic_nonsquare.c CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_q7_basic_nonsquare.c ===CHANGE_NOTICE(4/5)=========================================================== Sony Corporation added this file to 5.4.0 to support the CHW tensor layout ================================================================================ --- /dev/null +++ CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_CHW_q7_basic_nonsquare.c @@ -0,0 +1,214 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * Copyright 2018 Sony Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Title: arm_convolve_CHW_q7_basic_nonsquare.c + * Author: Sony Corporation + * Description: Sony Corporation added this file to 5.4.0 + * to support the CHW tensor layout + * $Date: 14. September 2018 + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions_nnabla.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q7 version of CHW convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + +arm_status arm_convolve_CHW_q7_basic_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + int16_t i_ker_x_begin, i_ker_y_begin; + int16_t i_ker_x_end, i_ker_y_end; + int16_t single_in_map_size = dim_im_in_x * dim_im_in_y; + int16_t kernel_size_2d = dim_kernel_x * dim_kernel_y; + int16_t kernel_size_3d = ch_im_in * kernel_size_2d; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + i_ker_y_begin = i_out_y * stride_y - padding_y; + i_ker_y_end = i_out_y * stride_y - padding_y + dim_kernel_y; + + for (i_ker_y = i_ker_y_begin; i_ker_y < i_ker_y_end; i_ker_y++) + { + + i_ker_x_begin = i_out_x * stride_x - padding_x; + i_ker_x_end = i_out_x * stride_x - padding_x + dim_kernel_x; + + for (i_ker_x = i_ker_x_begin; i_ker_x < i_ker_x_end; i_ker_x++) + { + + q15_t *pDest = pBuffer + (i_ker_y - i_ker_y_begin) * dim_kernel_x + (i_ker_x - i_ker_x_begin); + q15_t *pDestEnd = pDest + ch_im_in * kernel_size_2d; + + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* Filling 0 for out-of-bound paddings */ + for (; pDest < pDestEnd;) + { + *pDest = 0; + pDest += kernel_size_2d; + } + } else + { + /* Copying the pixel data to column */ + const q7_t *pSrc = Im_in + i_ker_y * dim_im_in_x + i_ker_x; + for (; pDest < pDestEnd;) + { + *pDest = *pSrc; + pSrc += single_in_map_size; + pDest += kernel_size_2d; + } + } + } + } + + pBuffer += kernel_size_3d; + + /* Computation is filed for every 2 columns */ + if (pBuffer == bufferA + 2 * kernel_size_3d) + { + pOut = + arm_nn_CHW_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + ch_im_in * + dim_kernel_y * dim_kernel_x, + dim_im_out_y * dim_im_out_x, + bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + /* Load the accumulator with bias first */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + + /* Point to the beging of the im2col buffer */ + q15_t *pB = bufferA; + + /* Each time it process 4 entries */ + uint16_t colCnt = kernel_size_3d >> 2; + + while (colCnt) + { + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); + + inB1 = *__SIMD32(pB)++; + sum = __SMLAD(inA1, inB1, sum); + inB2 = *__SIMD32(pB)++; + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = kernel_size_3d & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut += dim_im_out_y * dim_im_out_x; + } + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_CHW_mat_mult_kernel_q7_q15.c CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_CHW_mat_mult_kernel_q7_q15.c ===CHANGE_NOTICE(5/5)=========================================================== Sony Corporation added this file to 5.4.0 to support the CHW tensor layout ================================================================================ --- /dev/null +++ CMSIS_5/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_CHW_mat_mult_kernel_q7_q15.c @@ -0,0 +1,196 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * Copyright 2018 Sony Corporation + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Title: arm_nn_CHW_mat_mult_kernel_q7_q15.c + * Author: Sony Corporation + * Description: Sony Corporation added this file to 5.4.0 + * to support the CHW tensor layout in convolution + * $Date: 14. September 2018 + * -------------------------------------------------------------------- */ + +#include "arm_math.h" +#include "arm_nnfunctions_nnabla.h" + + /** + * @brief Matrix-multiplication function for convolution with CHW output + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] out_stride output buffer channel stride + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + * + * @details + * + * This function does the matrix multiplication with weight matrix + * and 2 columns from im2col. + */ + +q7_t *arm_nn_CHW_mat_mult_kernel_q7_q15(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t out_stride, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut) +{ + /* set up the second output pointers */ + q7_t *pOut_base = pOut; + q7_t *pOut2; + const q7_t *pBias = bias; + int16_t i_row; + + uint16_t rowCnt = ch_im_out >> 1; + /* this loop over rows in A */ + for (i_row = 0; i_row < rowCnt; ++i_row) + { + /* setup output pointers */ + pOut = pOut_base + 2 * i_row * out_stride; + pOut2 = pOut + out_stride; + + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* align the second pointer for A */ + const q7_t *pA2 = pA + numCol_A; + + /* sum & sum3 belong to same outmap, sum2 & sum4 belong to another outmap + * + * sum sum3 + * sum2 sum4 + * + */ + /* init the sum with bias */ + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = sum; + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = sum2; + + uint16_t colCnt = numCol_A >> 2; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA11, inA12, inA21, inA22; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inB2 = *__SIMD32(pB2)++; + + /* pA is in CHW -> inA11 & inA12 belong to same out-map weight */ + pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); + pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22); + + /* inB1 belongs to the first columns, inB2 is the second column */ + sum = __SMLAD(inA11, inB1, sum); + sum3 = __SMLAD(inA11, inB2, sum3); + sum2 = __SMLAD(inA21, inB1, sum2); + sum4 = __SMLAD(inA21, inB2, sum4); + + inB1 = *__SIMD32(pB)++; + inB2 = *__SIMD32(pB2)++; + + sum = __SMLAD(inA12, inB1, sum); + sum3 = __SMLAD(inA12, inB2, sum3); + sum2 = __SMLAD(inA22, inB1, sum2); + sum4 = __SMLAD(inA22, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q7_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum3 += inA1 * inB2; + sum2 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut2 = (q7_t) __SSAT((sum4 >> out_shift), 8); + + /* skip the row computed with A2 */ + pA += numCol_A; + } /* for over ch_im_out */ + + /* compute left-over row if any */ + if (ch_im_out & 0x1) + { + /* setup output pointers */ + pOut = pOut_base + (ch_im_out - 1) * out_stride; + + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* load the bias */ + q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = sum; + + uint16_t colCnt = numCol_A >> 2; + while (colCnt) + { + q31_t inA11, inA12; + q31_t inB1 = *__SIMD32(pB)++; + q31_t inB2 = *__SIMD32(pB2)++; + + pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); + + sum = __SMLAD(inA11, inB1, sum); + sum3 = __SMLAD(inA11, inB2, sum3); + + inB1 = *__SIMD32(pB)++; + inB2 = *__SIMD32(pB2)++; + + sum = __SMLAD(inA12, inB1, sum); + sum3 = __SMLAD(inA12, inB2, sum3); + + colCnt--; + } + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum3 += inA1 * inB2; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut = (q7_t) __SSAT((sum3 >> out_shift), 8); + } + + /* return the new output pointer with offset */ + return pOut_base + 2; +}