nuttx-apps/netutils/ntpclient/ntpclient.c
Juha Niskanen 35535655c5 ntpclient: change sinfo to ninfo
Signed-off-by: Juha Niskanen <juha.niskanen@haltian.com>
2021-01-14 11:07:58 -06:00

632 lines
18 KiB
C

/****************************************************************************
* netutils/ntpclient/ntpclient.c
*
* Copyright (C) 2014, 2016, 2020 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sched.h>
#include <errno.h>
#include <debug.h>
#include <netinet/in.h>
#ifdef CONFIG_LIBC_NETDB
# include <netdb.h>
# include <arpa/inet.h>
#endif
#include "netutils/ntpclient.h"
#include "ntpv3.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
#if defined(CONFIG_LIBC_NETDB) && !defined(CONFIG_NETUTILS_NTPCLIENT_SERVER)
# error CONFIG_NETUTILS_NTPCLIENT_SERVER my be provided
#endif
#if !defined(CONFIG_LIBC_NETDB) && !defined(CONFIG_NETUTILS_NTPCLIENT_SERVERIP)
# error CONFIG_NETUTILS_NTPCLIENT_SERVERIP my be provided
#endif
/* NTP Time is seconds since 1900. Convert to Unix time which is seconds
* since 1970
*/
#define NTP2UNIX_TRANSLATION 2208988800u
#define NTP_VERSION 3
/****************************************************************************
* Private Types
****************************************************************************/
/* This enumeration describes the state of the NTP daemon */
enum ntpc_daemon_e
{
NTP_NOT_RUNNING = 0,
NTP_STARTED,
NTP_RUNNING,
NTP_STOP_REQUESTED,
NTP_STOPPED
};
/* This type describes the state of the NTP client daemon. Only one
* instance of the NTP daemon is permitted in this implementation.
*/
struct ntpc_daemon_s
{
uint8_t state; /* See enum ntpc_daemon_e */
sem_t lock; /* Used to protect the whole structure */
sem_t sync; /* Used to synchronize start and stop events */
pid_t pid; /* Task ID of the NTP daemon */
};
/****************************************************************************
* Private Data
****************************************************************************/
/* This type describes the state of the NTP client daemon. Only one
* instance of the NTP daemon is permitted in this implementation. This
* limitation is due only to this global data structure.
*/
static struct ntpc_daemon_s g_ntpc_daemon =
{
NTP_NOT_RUNNING,
SEM_INITIALIZER(1),
SEM_INITIALIZER(0),
-1
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: ntpc_getuint32
*
* Description:
* Return the big-endian, 4-byte value in network (big-endian) order.
*
****************************************************************************/
static inline uint32_t ntpc_getuint32(FAR const uint8_t *ptr)
{
/* Network order is big-endian; host order is irrelevant */
return (uint32_t)ptr[3] | /* MS byte appears first in data stream */
((uint32_t)ptr[2] << 8) |
((uint32_t)ptr[1] << 16) |
((uint32_t)ptr[0] << 24);
}
/****************************************************************************
* Name: ntpc_settime
*
* Description:
* Given the NTP time in seconds, set the system time
*
****************************************************************************/
static void ntpc_settime(FAR uint8_t *timestamp)
{
struct timespec tp;
time_t seconds;
uint32_t frac;
uint32_t nsec;
#ifdef CONFIG_HAVE_LONG_LONG
uint64_t tmp;
#else
uint32_t a16;
uint32_t b0;
uint32_t t32;
uint32_t t16;
uint32_t t0;
#endif
/* NTP timestamps are represented as a 64-bit fixed-point number, in
* seconds relative to 0000 UT on 1 January 1900. The integer part is
* in the first 32 bits and the fraction part in the last 32 bits, as
* shown in the following diagram.
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Integer Part |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Fraction Part |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
seconds = ntpc_getuint32(timestamp);
/* Translate seconds to account for the difference in the origin time */
if (seconds > NTP2UNIX_TRANSLATION)
{
seconds -= NTP2UNIX_TRANSLATION;
}
/* Conversion of the fractional part to nanoseconds:
*
* NSec = (f * 1,000,000,000) / 4,294,967,296
* = (f * (5**9 * 2**9) / (2**32)
* = (f * 5**9) / (2**23)
* = (f * 1,953,125) / 8,388,608
*/
frac = ntpc_getuint32(timestamp + 4);
#ifdef CONFIG_HAVE_LONG_LONG
/* if we have 64-bit long long values, then the computation is easy */
tmp = ((uint64_t)frac * 1953125) >> 23;
nsec = (uint32_t)tmp;
#else
/* If we don't have 64 bit integer types, then the calculation is a little
* more complex:
*
* Let f = a << 16 + b
* 1,953,125 = 0x1d << 16 + 0xcd65
* NSec << 23 = ((a << 16) + b) * ((0x1d << 16) + 0xcd65)
* = (a << 16) * 0x1d << 16) +
* (a << 16) * 0xcd65 +
* b * 0x1d << 16) +
* b * 0xcd65;
*/
/* Break the fractional part up into two values */
a16 = frac >> 16;
b0 = frac & 0xffff;
/* Get the b32 and b0 terms
*
* t32 = (a << 16) * 0x1d << 16)
* t0 = b * 0xcd65
*/
t32 = 0x001d * a16;
t0 = 0xcd65 * b0;
/* Get the first b16 term
*
* (a << 16) * 0xcd65
*/
t16 = 0xcd65 * a16;
/* Add the upper 16-bits to the b32 accumulator */
t32 += (t16 >> 16);
/* Add the lower 16-bits to the b0 accumulator, handling carry to the b32
* accumulator
*/
t16 <<= 16;
if (t0 > (0xffffffff - t16))
{
t32++;
}
t0 += t16;
/* Get the second b16 term
*
* b * (0x1d << 16)
*/
t16 = 0x001d * b0;
/* Add the upper 16-bits to the b32 accumulator */
t32 += (t16 >> 16);
/* Add the lower 16-bits to the b0 accumulator, handling carry to the b32
* accumulator
*/
t16 <<= 16;
if (t0 > (0xffffffff - t16))
{
t32++;
}
t0 += t16;
/* t32 and t0 represent the 64 bit product. Now shift right by 23 bits to
* accomplish the divide by by 2**23.
*/
nsec = (t32 << (32 - 23)) + (t0 >> 23);
#endif
/* Set the system time */
tp.tv_sec = seconds;
tp.tv_nsec = nsec;
clock_settime(CLOCK_REALTIME, &tp);
ninfo("Set time to %ju seconds\n", (intmax_t)tp.tv_sec);
}
/****************************************************************************
* Name: ntpc_daemon
*
* Description:
* This the NTP client daemon. This is a *very* minimal
* implementation! An NTP request is and the system clock is set when the
* response is received
*
****************************************************************************/
static int ntpc_daemon(int argc, char **argv)
{
struct sockaddr_in server;
struct ntp_datagram_s pkt;
struct timeval tv;
#ifdef CONFIG_LIBC_NETDB
struct hostent *he;
struct in_addr **addr_list;
#endif
socklen_t socklen;
ssize_t nbytes;
int exitcode = EXIT_SUCCESS;
int retry = 0;
int sd;
int ret;
/* Indicate that we have started */
g_ntpc_daemon.state = NTP_RUNNING;
sem_post(&g_ntpc_daemon.sync);
/* Create a datagram socket */
sd = socket(AF_INET, SOCK_DGRAM, 0);
if (sd < 0)
{
nerr("ERROR: socket failed: %d\n", errno);
g_ntpc_daemon.state = NTP_STOPPED;
sem_post(&g_ntpc_daemon.sync);
return EXIT_FAILURE;
}
/* Setup a receive timeout on the socket */
tv.tv_sec = 5;
tv.tv_usec = 0;
ret = setsockopt(sd, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(struct timeval));
if (ret < 0)
{
nerr("ERROR: setsockopt failed: %d\n", errno);
g_ntpc_daemon.state = NTP_STOPPED;
sem_post(&g_ntpc_daemon.sync);
return EXIT_FAILURE;
}
/* Setup or sockaddr_in struct with information about the server we are
* going to ask the time from.
*/
memset(&server, 0, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(CONFIG_NETUTILS_NTPCLIENT_PORTNO);
#ifndef CONFIG_LIBC_NETDB
server.sin_addr.s_addr = htonl(CONFIG_NETUTILS_NTPCLIENT_SERVERIP);
#else
he = gethostbyname(CONFIG_NETUTILS_NTPCLIENT_SERVER);
if (he != NULL && he->h_addrtype == AF_INET)
{
addr_list = (struct in_addr **)he->h_addr_list;
server.sin_addr.s_addr = addr_list[0]->s_addr;
ninfo("INFO: '%s' resolved to: %s\n",
CONFIG_NETUTILS_NTPCLIENT_SERVER,
inet_ntoa(server.sin_addr));
}
else
{
nerr("ERROR: Failed to resolve '%s'\n",
CONFIG_NETUTILS_NTPCLIENT_SERVER);
g_ntpc_daemon.state = NTP_STOPPED;
sem_post(&g_ntpc_daemon.sync);
return EXIT_FAILURE;
}
#endif
/* Here we do the communication with the NTP server. This is a very simple
* client architecture. A request is sent and then a NTP packet is
* received and used to set the current time.
*
* NOTE that the scheduler is locked whenever this loop runs. That
* assures both: (1) that there are no asynchronous stop requests and
* (2) that we are not suspended while in critical moments when we about
* to set the new time. This sounds harsh, but this function is suspended
* most of the time either: (1) sending a datagram, (2) receiving a
* datagram, or (3) waiting for the next poll cycle.
*
* TODO: The first datagram that is sent is usually lost. That is because
* the MAC address of the NTP server is not in the ARP table. This is
* particularly bad here because the request will not be sent again until
* the long delay expires leaving the system with bad time for a long time
* initially. Solutions:
*
* 1. Fix send logic so that it assures that the ARP request has been
* sent and the entry is in the ARP table before sending the packet
* (best).
* 2. Add some ad hoc logic here so that there is no delay until at least
* one good time is received.
*/
sched_lock();
while (g_ntpc_daemon.state != NTP_STOP_REQUESTED)
{
/* Format the transmit datagram */
memset(&pkt, 0, sizeof(pkt));
pkt.lvm = MKLVM(0, NTP_VERSION, 3);
ninfo("Sending a NTP packet\n");
ret = sendto(sd, &pkt, sizeof(struct ntp_datagram_s),
0, (FAR struct sockaddr *)&server,
sizeof(struct sockaddr_in));
if (ret < 0)
{
/* Check if we received a signal. That is not an error but
* other error events will terminate the client.
*/
int errval = errno;
if (errval != EINTR)
{
nerr("ERROR: sendto() failed: %d\n", errval);
exitcode = EXIT_FAILURE;
break;
}
/* Go back to the top of the loop if we were interrupted
* by a signal. The signal might mean that we were
* requested to stop(?)
*/
continue;
}
/* Attempt to receive a packet (with a timeout that was set up via
* setsockopt() above)
*/
socklen = sizeof(struct sockaddr_in);
nbytes = recvfrom(sd, (void *)&pkt, sizeof(struct ntp_datagram_s),
0, (FAR struct sockaddr *)&server, &socklen);
/* Check if the received message was long enough to be a valid NTP
* datagram.
*/
if (nbytes >= (ssize_t)NTP_DATAGRAM_MINSIZE)
{
ninfo("Setting time\n");
ntpc_settime(pkt.recvtimestamp);
retry = 0;
}
/* Check for errors. Note that properly received, short datagrams
* are simply ignored.
*/
else if (nbytes < 0)
{
/* Check if we received a signal. That is not an error but
* other error events will terminate the client.
*/
int errval = errno;
if (errval != EINTR)
{
/* Allow up to three retries */
if (++retry < 3)
{
continue;
}
/* Then declare the failure */
nerr("ERROR: recvfrom() failed: %d\n", errval);
exitcode = EXIT_FAILURE;
break;
}
}
/* A full implementation of an NTP client would require much more. I
* think we can skip most of that here.
*/
if (g_ntpc_daemon.state == NTP_RUNNING)
{
ninfo("Waiting for %d seconds\n",
CONFIG_NETUTILS_NTPCLIENT_POLLDELAYSEC);
sleep(CONFIG_NETUTILS_NTPCLIENT_POLLDELAYSEC);
}
}
/* The NTP client is terminating */
sched_unlock();
g_ntpc_daemon.state = NTP_STOPPED;
sem_post(&g_ntpc_daemon.sync);
return exitcode;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: ntpc_start
*
* Description:
* Start the NTP daemon
*
* Returned Value:
* On success, the non-negative task ID of the NTPC daemon is returned;
* On failure, a negated errno value is returned.
*
****************************************************************************/
int ntpc_start(void)
{
/* Is the NTP in a non-running state? */
sem_wait(&g_ntpc_daemon.lock);
if (g_ntpc_daemon.state == NTP_NOT_RUNNING ||
g_ntpc_daemon.state == NTP_STOPPED)
{
/* Start the NTP daemon */
g_ntpc_daemon.state = NTP_STARTED;
g_ntpc_daemon.pid =
task_create("NTP daemon", CONFIG_NETUTILS_NTPCLIENT_SERVERPRIO,
CONFIG_NETUTILS_NTPCLIENT_STACKSIZE, ntpc_daemon,
NULL);
/* Handle failures to start the NTP daemon */
if (g_ntpc_daemon.pid < 0)
{
int errval = errno;
DEBUGASSERT(errval > 0);
g_ntpc_daemon.state = NTP_STOPPED;
nerr("ERROR: Failed to start the NTP daemon: %d\n", errval);
sem_post(&g_ntpc_daemon.lock);
return -errval;
}
/* Wait for any daemon state change */
do
{
sem_wait(&g_ntpc_daemon.sync);
}
while (g_ntpc_daemon.state == NTP_STARTED);
}
sem_post(&g_ntpc_daemon.lock);
return g_ntpc_daemon.pid;
}
/****************************************************************************
* Name: ntpc_stop
*
* Description:
* Stop the NTP daemon
*
* Returned Value:
* Zero on success; a negated errno value on failure. The current
* implementation only returns success.
*
****************************************************************************/
int ntpc_stop(void)
{
int ret;
/* Is the NTP in a running state? */
sem_wait(&g_ntpc_daemon.lock);
if (g_ntpc_daemon.state == NTP_STARTED ||
g_ntpc_daemon.state == NTP_RUNNING)
{
/* Yes.. request that the daemon stop. */
g_ntpc_daemon.state = NTP_STOP_REQUESTED;
/* Wait for any daemon state change */
do
{
/* Signal the NTP client */
ret = kill(g_ntpc_daemon.pid,
CONFIG_NETUTILS_NTPCLIENT_SIGWAKEUP);
if (ret < 0)
{
nerr("ERROR: kill pid %d failed: %d\n",
g_ntpc_daemon.pid, errno);
break;
}
/* Wait for the NTP client to respond to the stop request */
sem_wait(&g_ntpc_daemon.sync);
}
while (g_ntpc_daemon.state == NTP_STOP_REQUESTED);
}
sem_post(&g_ntpc_daemon.lock);
return OK;
}