1142 lines
30 KiB
C
1142 lines
30 KiB
C
/****************************************************************************
|
|
* examples/dsptest/test_motor.c
|
|
*
|
|
* Copyright (C) 2018 Gregory Nutt. All rights reserved.
|
|
* Author: Mateusz Szafoni <raiden00@railab.me>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include "dsptest.h"
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
|
|
/* Set float precision for this module */
|
|
|
|
#undef UNITY_FLOAT_PRECISION
|
|
#define UNITY_FLOAT_PRECISION (0.0001f)
|
|
|
|
/****************************************************************************
|
|
* Private Types
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Private Function Protototypes
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Private Data
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/* Initialize openloop */
|
|
|
|
static void test_openloop_init(void)
|
|
{
|
|
struct openloop_data_s op;
|
|
float angle = 0.0;
|
|
float max_speed = 100;
|
|
float per = 10e-6;
|
|
|
|
/* Initialize openlooop controller */
|
|
|
|
motor_openloop_init(&op, max_speed, per);
|
|
|
|
/* Get openloop angle */
|
|
|
|
angle = motor_openloop_angle_get(&op);
|
|
|
|
/* Test values after initialization */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(0.0, angle);
|
|
TEST_ASSERT_EQUAL_FLOAT(per, op.per);
|
|
TEST_ASSERT_EQUAL_FLOAT(max_speed, op.max);
|
|
}
|
|
|
|
/* Single step openloop */
|
|
|
|
static void test_openloop_one_step(void)
|
|
{
|
|
struct openloop_data_s op;
|
|
float expected = 0.0;
|
|
float angle = 0.0;
|
|
float max_speed = 100;
|
|
float speed = 10;
|
|
float per = 10e-6;
|
|
|
|
/* Initialize openlooop controller */
|
|
|
|
motor_openloop_init(&op, max_speed, per);
|
|
|
|
/* Do single iteration in CW direction */
|
|
|
|
motor_openloop(&op, speed, DIR_CW);
|
|
|
|
/* Get openloop angle */
|
|
|
|
angle = motor_openloop_angle_get(&op);
|
|
|
|
/* Get expected value */
|
|
|
|
expected = speed * per;
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
|
|
|
|
/* Do single iteration in CCW direction */
|
|
|
|
motor_openloop(&op, speed, DIR_CCW);
|
|
|
|
/* Get openloop angle */
|
|
|
|
angle = motor_openloop_angle_get(&op);
|
|
|
|
/* Get expected value */
|
|
|
|
expected = 0.0;
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
|
|
}
|
|
|
|
/* Many steps in openloop */
|
|
|
|
static void test_openloop_many_steps(void)
|
|
{
|
|
struct openloop_data_s op;
|
|
float expected = 0.0;
|
|
float angle = 0.0;
|
|
float max_speed = 100;
|
|
float speed = 10;
|
|
float per = 50e-6;
|
|
int iter = 10;
|
|
int i = 0;
|
|
|
|
/* Initialize openlooop controller */
|
|
|
|
motor_openloop_init(&op, max_speed, per);
|
|
|
|
/* Do some iterations in CW direction */
|
|
|
|
for (i = 0; i < iter; i+=1)
|
|
{
|
|
motor_openloop(&op, speed, DIR_CW);
|
|
}
|
|
|
|
/* Get openloop angle */
|
|
|
|
angle = motor_openloop_angle_get(&op);
|
|
|
|
/* Get expected value */
|
|
|
|
expected = speed * per * iter;
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
|
|
|
|
/* Do some iterations in CCW direction */
|
|
|
|
for (i = 0; i < iter; i+=1)
|
|
{
|
|
motor_openloop(&op, speed, DIR_CCW);
|
|
}
|
|
|
|
/* Get openloop angle */
|
|
|
|
angle = motor_openloop_angle_get(&op);
|
|
|
|
/* We should return to 0 */
|
|
|
|
expected = 0.0;
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
|
|
}
|
|
|
|
/* Test maximum openloop speed */
|
|
|
|
static void test_openloop_max_speed(void)
|
|
{
|
|
TEST_IGNORE_MESSAGE("not implemented");
|
|
}
|
|
|
|
/* Normalize angle in openloop */
|
|
|
|
static void test_openloop_normalize_angle(void)
|
|
{
|
|
struct openloop_data_s op;
|
|
float expected = 0.0;
|
|
float angle = 0.0;
|
|
float max_speed = 100;
|
|
float speed = 10;
|
|
float per = 10e-6;
|
|
int iter = 1000;
|
|
int i = 0;
|
|
|
|
/* Initialize openlooop controller */
|
|
|
|
motor_openloop_init(&op, max_speed, per);
|
|
|
|
/* Do many iterations to exceed 2PI range */
|
|
|
|
for (i = 0; i < iter; i+=1)
|
|
{
|
|
motor_openloop(&op, speed, DIR_CW);
|
|
}
|
|
|
|
/* Get openloop angle */
|
|
|
|
angle = motor_openloop_angle_get(&op);
|
|
|
|
/* Get expected value */
|
|
|
|
expected = speed * per * iter;
|
|
|
|
/* And normalize to <0.0, 2*PI> */
|
|
|
|
while (expected > 2*M_PI_F)
|
|
{
|
|
expected -= 2*M_PI_F;
|
|
}
|
|
|
|
/* Test angle */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
|
|
}
|
|
|
|
/* Initialize otor angle */
|
|
|
|
static void test_angle_init(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
uint8_t p = 0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 32;
|
|
motor_angle_init(&angle, p);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test initial values */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(0.0, angle_e);
|
|
TEST_ASSERT_EQUAL_FLOAT(0.0, angle_m);
|
|
TEST_ASSERT_EQUAL_UINT8(p, angle.p);
|
|
TEST_ASSERT_EQUAL_FLOAT((float)1.0/p, angle.one_by_p);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
}
|
|
|
|
/* Update electrical angle in CW direction */
|
|
|
|
static void test_angle_el_update_cw(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 8;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Update electrical angle with 0.0 */
|
|
|
|
angle_step = 0.0;
|
|
expected_e = 0.0;
|
|
expected_m = 0.0;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_e_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
|
|
/* Update electrical angle with 0.1 */
|
|
|
|
angle_step = 0.1;
|
|
expected_e = 0.1;
|
|
expected_m = 0.1/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_e_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
|
|
/* Update electrical angle with 2*PI + 0.2 in three steps.
|
|
* This should increase pole counter in angle structure by 1.
|
|
*/
|
|
|
|
angle_step = 2 * M_PI_F + 0.2;
|
|
expected_e = 0.2;
|
|
expected_m = angle_step/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_e_update(&angle, M_PI_F, DIR_CW);
|
|
motor_angle_e_update(&angle, 2*M_PI_F, DIR_CW);
|
|
motor_angle_e_update(&angle, 0.2, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(1, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
}
|
|
|
|
/* Update electrical angle in CCW direction */
|
|
|
|
static void test_angle_el_update_ccw(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 8;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Move angle 0.1 in CCW direction from 0.0.
|
|
* We start from 0.0 and move angle CCW by 0.1.
|
|
*/
|
|
|
|
angle_step = MOTOR_ANGLE_E_MAX-0.1;
|
|
expected_e = angle_step;
|
|
expected_m = (p-1)*MOTOR_ANGLE_M_MAX/p + expected_e/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_e_update(&angle, angle_step, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(p-1, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
|
|
/* Update electrical angle with 2PI+0.1 in CCW direction in three steps */
|
|
|
|
angle_step = (MOTOR_ANGLE_E_MAX + 0.1);
|
|
expected_e = MOTOR_ANGLE_E_MAX-0.1;
|
|
expected_m = (p-2)*MOTOR_ANGLE_M_MAX/p + expected_e/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX-M_PI_F, DIR_CCW);
|
|
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX-2*M_PI_F, DIR_CCW);
|
|
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX-0.1, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(p-2, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
}
|
|
|
|
/* Update electrical angle and overflow electrical angle in CW direction */
|
|
|
|
static void test_angle_el_update_cw_overflow(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
float a = 0.0;
|
|
int i = 0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 8;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Update electrical angle to achieve full mechanical rotation */
|
|
|
|
angle_step = 0.1;
|
|
expected_e = angle_step;
|
|
expected_m = angle_step/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move angle in loop */
|
|
|
|
for (i = 0; i < p; i += 1)
|
|
{
|
|
for (a = 0.0; a <= MOTOR_ANGLE_E_MAX; a += angle_step)
|
|
{
|
|
motor_angle_e_update(&angle, a, DIR_CW);
|
|
}
|
|
}
|
|
|
|
/* Test poles counter before final step */
|
|
|
|
TEST_ASSERT_EQUAL_INT8(p-1, angle.i);
|
|
|
|
/* One more step after overflow mechanical angle */
|
|
|
|
a = angle_step;
|
|
motor_angle_e_update(&angle, a, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
}
|
|
|
|
/* Update electrical angle and overflow electrical angle in CCW direction */
|
|
|
|
static void test_angle_el_update_ccw_overflow(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
float a = 0.0;
|
|
int i = 0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 8;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Update electrical angle to achieve full mechanical rotation */
|
|
|
|
angle_step = 0.1;
|
|
expected_e = MOTOR_ANGLE_E_MAX - angle_step;
|
|
expected_m = MOTOR_ANGLE_M_MAX - angle_step/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move angle in loop */
|
|
|
|
for (i = 0; i < p; i += 1)
|
|
{
|
|
for (a = MOTOR_ANGLE_E_MAX; a >= 0.0; a -= angle_step)
|
|
{
|
|
motor_angle_e_update(&angle, a, DIR_CCW);
|
|
}
|
|
}
|
|
|
|
/* Test poles counter before final step */
|
|
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
|
|
/* One more step after overflow mechanical angle */
|
|
|
|
a = MOTOR_ANGLE_E_MAX - 0.1;
|
|
motor_angle_e_update(&angle, a, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(7, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
}
|
|
|
|
/* Update electric angle and change direction */
|
|
|
|
static void test_angle_el_change_dir(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
int i = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
float a = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 7;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Move electrical angle with 4*(2PI) + 0.1.
|
|
* It give us pole counter = 4
|
|
*/
|
|
|
|
angle_step = 0.1;
|
|
expected_m = 4*MOTOR_ANGLE_M_MAX/p + angle_step/p;
|
|
expected_e = 0.1;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move angle in loop */
|
|
|
|
for (i = 0; i < 4; i += 1)
|
|
{
|
|
for (a = 0.0; a <= MOTOR_ANGLE_E_MAX; a += angle_step)
|
|
{
|
|
motor_angle_e_update(&angle, a, DIR_CW);
|
|
}
|
|
}
|
|
|
|
/* Test poles counter before final step */
|
|
|
|
TEST_ASSERT_EQUAL_INT8(3, angle.i);
|
|
|
|
/* And rest 0.1 */
|
|
|
|
motor_angle_e_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(4, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
|
|
/* Now move angle backward 2*(2PI) + 0.1 */
|
|
|
|
angle_step = 0.1;
|
|
expected_m = 2*MOTOR_ANGLE_M_MAX/p - angle_step/p;
|
|
expected_e = MOTOR_ANGLE_E_MAX - angle_step;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move angle in loop */
|
|
|
|
for (i = 0; i < 2; i += 1)
|
|
{
|
|
for (a = angle_m; a >= 0.0; a -= angle_step)
|
|
{
|
|
motor_angle_e_update(&angle, a, DIR_CCW);
|
|
}
|
|
}
|
|
|
|
/* Test poles counter before final step */
|
|
|
|
TEST_ASSERT_EQUAL_INT8(2, angle.i);
|
|
|
|
/* And rest 0.1 */
|
|
|
|
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX-angle_step, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(1, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
|
|
/* and again in forward direction 4*(2PI) + 0.1 */
|
|
|
|
angle_step = 0.1;
|
|
expected_m = 5*MOTOR_ANGLE_M_MAX/p + angle_step/p;
|
|
expected_e = 0.1;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move angle in loop */
|
|
|
|
for (i = 0; i < 4; i += 1)
|
|
{
|
|
for (a = angle_e; a <= MOTOR_ANGLE_E_MAX; a += angle_step)
|
|
{
|
|
motor_angle_e_update(&angle, a, DIR_CW);
|
|
}
|
|
}
|
|
|
|
/* Test poles counter before final step */
|
|
|
|
TEST_ASSERT_EQUAL_INT8(4, angle.i);
|
|
|
|
/* And rest 0.1 */
|
|
|
|
motor_angle_e_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(5, angle.i);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
}
|
|
|
|
/* Update mechanical angle in CW direction */
|
|
|
|
static void test_angle_m_update_cw(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 8;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Update mechanical angle with 0.0 */
|
|
|
|
angle_step = 0.0;
|
|
expected_m = 0.0;
|
|
expected_e = 0.0;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_m_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
|
|
/* Update mechanical angle with 0.1 */
|
|
|
|
angle_step = 0.1;
|
|
expected_m = angle_step;
|
|
expected_e = angle_step*p - 0*MOTOR_ANGLE_E_MAX/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_m_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
|
|
/* Update mechanical angle to get one electrical angle rotation + 0.1 */
|
|
|
|
angle_step = MOTOR_ANGLE_M_MAX/p + 0.1;
|
|
expected_m = angle_step;
|
|
expected_e = angle_step*p - 1*MOTOR_ANGLE_E_MAX;
|
|
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_m_update(&angle, angle_step/3, DIR_CW);
|
|
motor_angle_m_update(&angle, 2*angle_step/3, DIR_CW);
|
|
motor_angle_m_update(&angle, 3*angle_step/3, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(1, angle.i);
|
|
}
|
|
|
|
/* Update mechanical angle in CCW direction */
|
|
|
|
static void test_angle_m_update_ccw(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 8;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Update mechanical angle with 1.0
|
|
* For 8 poles, one electrical angle rotationa takes ~0.785.
|
|
* So with angle step = 1.0 we have 1 electical angle rotation plus some rest.
|
|
*/
|
|
|
|
angle_step = 1.0;
|
|
expected_m = angle_step;
|
|
expected_e = angle_step*p - 1*MOTOR_ANGLE_E_MAX;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_m_update(&angle, angle_step, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(1, angle.i);
|
|
|
|
/* Update mechanical angle to get one electrical angle rotation */
|
|
|
|
angle_step = angle_step - MOTOR_ANGLE_E_MAX/p;
|
|
expected_m = angle_step;
|
|
expected_e = angle_step*p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_m_update(&angle, angle_step/3, DIR_CCW);
|
|
motor_angle_m_update(&angle, 2*angle_step/3, DIR_CCW);
|
|
motor_angle_m_update(&angle, 3*angle_step/3, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
}
|
|
|
|
/* Update mechanical angle and overflow mechanical angle in CW direction */
|
|
|
|
static void test_angle_m_update_cw_overflow(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 3;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Full mechanical angle rotation (2PI) + 0.1 in CW direction */
|
|
|
|
angle_step = 0.1;
|
|
expected_m = angle_step;
|
|
expected_e = 0*MOTOR_ANGLE_E_MAX/p + angle_step*p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_m_update(&angle, 0.0, DIR_CW);
|
|
motor_angle_m_update(&angle, MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, 1*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, 2*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, 3*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, 4*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, angle_step, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(0, angle.i);
|
|
}
|
|
|
|
/* Update mechanical angle and overflow mechanical angle in CCW direction */
|
|
|
|
static void test_angle_m_update_ccw_overflow(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 3;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Full mechanical angle rotation (2PI) + 0.1 in CCW direction */
|
|
|
|
angle_step = MOTOR_ANGLE_M_MAX - 0.1;
|
|
expected_m = angle_step;
|
|
expected_e = MOTOR_ANGLE_E_MAX - 0.1*p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_m_update(&angle, 0.0, DIR_CCW);
|
|
motor_angle_m_update(&angle, 4*MOTOR_ANGLE_M_MAX/4, DIR_CCW);
|
|
motor_angle_m_update(&angle, 3*MOTOR_ANGLE_M_MAX/4, DIR_CCW);
|
|
motor_angle_m_update(&angle, 2*MOTOR_ANGLE_M_MAX/4, DIR_CCW);
|
|
motor_angle_m_update(&angle, 1*MOTOR_ANGLE_M_MAX/4, DIR_CCW);
|
|
motor_angle_m_update(&angle, angle_step, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(p-1, angle.i);
|
|
}
|
|
|
|
/* Update mechanical angle and change direction */
|
|
|
|
static void test_angle_m_change_dir(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float expected_i = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 3;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Move mechanical angle by 3*(2PI)/4 in CW direction */
|
|
|
|
angle_step = 3*MOTOR_ANGLE_M_MAX/4;
|
|
expected_m = angle_step;
|
|
expected_i = ((int)(angle_step*p/MOTOR_ANGLE_M_MAX));
|
|
expected_e = angle_step*p - expected_i*MOTOR_ANGLE_E_MAX;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_m_update(&angle, 0.0, DIR_CW);
|
|
motor_angle_m_update(&angle, 1*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, 2*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
motor_angle_m_update(&angle, 3*MOTOR_ANGLE_M_MAX/4, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
|
|
|
|
/* Move mechanical angle by 1.0 in CCW direction */
|
|
|
|
angle_step = 3*MOTOR_ANGLE_M_MAX/4 - 2.0;
|
|
expected_m = angle_step;
|
|
expected_i = ((int)(angle_step*p/MOTOR_ANGLE_M_MAX));
|
|
expected_e = angle_step*p - expected_i*MOTOR_ANGLE_E_MAX;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
motor_angle_m_update(&angle, 3*MOTOR_ANGLE_M_MAX/4-1.0, DIR_CCW);
|
|
motor_angle_m_update(&angle, 3*MOTOR_ANGLE_M_MAX/4-2.0, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
|
|
}
|
|
|
|
/* Mix update mechanical angle and update electrical angle */
|
|
|
|
static void test_angle_m_el_mixed(void)
|
|
{
|
|
struct motor_angle_s angle;
|
|
uint8_t p = 0;
|
|
int i = 0;
|
|
float angle_step = 0.0;
|
|
float angle_m = 0.0;
|
|
float angle_e = 0.0;
|
|
float expected_e = 0.0;
|
|
float expected_m = 0.0;
|
|
float expected_i = 0.0;
|
|
float s = 0.0;
|
|
float c = 0.0;
|
|
float a = 0.0;
|
|
|
|
/* Initialize motor angle */
|
|
|
|
p = 27;
|
|
motor_angle_init(&angle, p);
|
|
|
|
/* Update mechanical angle to get 4 electrical angle
|
|
* rotations + 0.1 in CW direction
|
|
*/
|
|
|
|
angle_step = 4*MOTOR_ANGLE_M_MAX/p + 0.1;
|
|
expected_m = angle_step;
|
|
expected_i = ((int)(angle_step*p/MOTOR_ANGLE_M_MAX));
|
|
expected_e = angle_step*p - expected_i*MOTOR_ANGLE_E_MAX;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move in a few steps */
|
|
|
|
motor_angle_m_update(&angle, 0.0, DIR_CW);
|
|
motor_angle_m_update(&angle, MOTOR_ANGLE_M_MAX/p, DIR_CW);
|
|
motor_angle_m_update(&angle, 4*MOTOR_ANGLE_M_MAX/p, DIR_CW);
|
|
motor_angle_m_update(&angle, 4*MOTOR_ANGLE_M_MAX/p + 0.1, DIR_CW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
|
|
|
|
/* Now move electrical angle by 2 full rotation in CCW direction.
|
|
* This should give us the same electrical angle and mechanical
|
|
* angle reduced by 2 electrical rotations.
|
|
*/
|
|
|
|
angle_step = 2*MOTOR_ANGLE_E_MAX;
|
|
expected_i = expected_i - 2;
|
|
expected_e = expected_e;
|
|
expected_m = expected_m - 2*MOTOR_ANGLE_M_MAX/p;
|
|
s = sin(expected_e);
|
|
c = cos(expected_e);
|
|
|
|
/* Move angle in loop */
|
|
|
|
for (i = 0; i < 2; i+=1)
|
|
{
|
|
for (a = expected_e ; a >= 0.0; a -= 0.1)
|
|
{
|
|
motor_angle_e_update(&angle, a, DIR_CCW);
|
|
}
|
|
}
|
|
|
|
/* Final step */
|
|
|
|
motor_angle_e_update(&angle, expected_e, DIR_CCW);
|
|
|
|
angle_m = motor_angle_m_get(&angle);
|
|
angle_e = motor_angle_e_get(&angle);
|
|
|
|
/* Test */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
|
|
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
|
|
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
|
|
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: test_motor
|
|
****************************************************************************/
|
|
|
|
void test_motor(void)
|
|
{
|
|
UNITY_BEGIN();
|
|
|
|
TEST_SEPARATOR();
|
|
|
|
/* Test some definitions */
|
|
|
|
TEST_ASSERT_EQUAL_FLOAT(1.0, DIR_CW);
|
|
TEST_ASSERT_EQUAL_FLOAT(-1.0, DIR_CCW);
|
|
|
|
/* Openloop control functions */
|
|
|
|
RUN_TEST(test_openloop_init);
|
|
RUN_TEST(test_openloop_one_step);
|
|
RUN_TEST(test_openloop_many_steps);
|
|
RUN_TEST(test_openloop_max_speed);
|
|
RUN_TEST(test_openloop_normalize_angle);
|
|
|
|
/* Motor angle */
|
|
|
|
RUN_TEST(test_angle_init);
|
|
RUN_TEST(test_angle_el_update_cw);
|
|
RUN_TEST(test_angle_el_update_ccw);
|
|
RUN_TEST(test_angle_el_update_cw_overflow);
|
|
RUN_TEST(test_angle_el_update_ccw_overflow);
|
|
RUN_TEST(test_angle_el_change_dir);
|
|
RUN_TEST(test_angle_m_update_cw);
|
|
RUN_TEST(test_angle_m_update_ccw);
|
|
RUN_TEST(test_angle_m_update_cw_overflow);
|
|
RUN_TEST(test_angle_m_update_ccw_overflow);
|
|
RUN_TEST(test_angle_m_change_dir);
|
|
RUN_TEST(test_angle_m_el_mixed);
|
|
|
|
UNITY_END();
|
|
}
|