nuttx-apps/examples/dsptest/test_motor.c
2020-04-03 22:23:23 +01:00

1143 lines
30 KiB
C

/****************************************************************************
* examples/dsptest/test_motor.c
*
* Copyright (C) 2018 Gregory Nutt. All rights reserved.
* Author: Mateusz Szafoni <raiden00@railab.me>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include "dsptest.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Set float precision for this module */
#undef UNITY_FLOAT_PRECISION
#define UNITY_FLOAT_PRECISION (0.0001f)
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Protototypes
****************************************************************************/
/****************************************************************************
* Private Data
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/* Initialize openloop */
static void test_openloop_init(void)
{
struct openloop_data_s op;
float angle = 0.0;
float max_speed = 100;
float per = 10e-6;
/* Initialize openlooop controller */
motor_openloop_init(&op, max_speed, per);
/* Get openloop angle */
angle = motor_openloop_angle_get(&op);
/* Test values after initialization */
TEST_ASSERT_EQUAL_FLOAT(0.0, angle);
TEST_ASSERT_EQUAL_FLOAT(per, op.per);
TEST_ASSERT_EQUAL_FLOAT(max_speed, op.max);
}
/* Single step openloop */
static void test_openloop_one_step(void)
{
struct openloop_data_s op;
float expected = 0.0;
float angle = 0.0;
float max_speed = 100;
float speed = 10;
float per = 10e-6;
/* Initialize openlooop controller */
motor_openloop_init(&op, max_speed, per);
/* Do single iteration in CW direction */
motor_openloop(&op, speed, DIR_CW);
/* Get openloop angle */
angle = motor_openloop_angle_get(&op);
/* Get expected value */
expected = speed * per;
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
/* Do single iteration in CCW direction */
motor_openloop(&op, speed, DIR_CCW);
/* Get openloop angle */
angle = motor_openloop_angle_get(&op);
/* Get expected value */
expected = 0.0;
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
}
/* Many steps in openloop */
static void test_openloop_many_steps(void)
{
struct openloop_data_s op;
float expected = 0.0;
float angle = 0.0;
float max_speed = 100;
float speed = 10;
float per = 50e-6;
int iter = 10;
int i = 0;
/* Initialize openlooop controller */
motor_openloop_init(&op, max_speed, per);
/* Do some iterations in CW direction */
for (i = 0; i < iter; i += 1)
{
motor_openloop(&op, speed, DIR_CW);
}
/* Get openloop angle */
angle = motor_openloop_angle_get(&op);
/* Get expected value */
expected = speed * per * iter;
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
/* Do some iterations in CCW direction */
for (i = 0; i < iter; i += 1)
{
motor_openloop(&op, speed, DIR_CCW);
}
/* Get openloop angle */
angle = motor_openloop_angle_get(&op);
/* We should return to 0 */
expected = 0.0;
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
}
/* Test maximum openloop speed */
static void test_openloop_max_speed(void)
{
TEST_IGNORE_MESSAGE("not implemented");
}
/* Normalize angle in openloop */
static void test_openloop_normalize_angle(void)
{
struct openloop_data_s op;
float expected = 0.0;
float angle = 0.0;
float max_speed = 100;
float speed = 10;
float per = 10e-6;
int iter = 1000;
int i = 0;
/* Initialize openlooop controller */
motor_openloop_init(&op, max_speed, per);
/* Do many iterations to exceed 2PI range */
for (i = 0; i < iter; i += 1)
{
motor_openloop(&op, speed, DIR_CW);
}
/* Get openloop angle */
angle = motor_openloop_angle_get(&op);
/* Get expected value */
expected = speed * per * iter;
/* And normalize to <0.0, 2*PI> */
while (expected > 2 * M_PI_F)
{
expected -= 2 * M_PI_F;
}
/* Test angle */
TEST_ASSERT_EQUAL_FLOAT(expected, angle);
}
/* Initialize otor angle */
static void test_angle_init(void)
{
struct motor_angle_s angle;
float angle_m = 0.0;
float angle_e = 0.0;
uint8_t p = 0;
/* Initialize motor angle */
p = 32;
motor_angle_init(&angle, p);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test initial values */
TEST_ASSERT_EQUAL_FLOAT(0.0, angle_e);
TEST_ASSERT_EQUAL_FLOAT(0.0, angle_m);
TEST_ASSERT_EQUAL_UINT8(p, angle.p);
TEST_ASSERT_EQUAL_FLOAT((float)1.0 / p, angle.one_by_p);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
}
/* Update electrical angle in CW direction */
static void test_angle_el_update_cw(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 8;
motor_angle_init(&angle, p);
/* Update electrical angle with 0.0 */
angle_step = 0.0;
expected_e = 0.0;
expected_m = 0.0;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_e_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
/* Update electrical angle with 0.1 */
angle_step = 0.1;
expected_e = 0.1;
expected_m = 0.1 / p;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_e_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
/* Update electrical angle with 2*PI + 0.2 in three steps.
* This should increase pole counter in angle structure by 1.
*/
angle_step = 2 * M_PI_F + 0.2;
expected_e = 0.2;
expected_m = angle_step / p;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_e_update(&angle, M_PI_F, DIR_CW);
motor_angle_e_update(&angle, 2 * M_PI_F, DIR_CW);
motor_angle_e_update(&angle, 0.2, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(1, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
}
/* Update electrical angle in CCW direction */
static void test_angle_el_update_ccw(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 8;
motor_angle_init(&angle, p);
/* Move angle 0.1 in CCW direction from 0.0.
* We start from 0.0 and move angle CCW by 0.1.
*/
angle_step = MOTOR_ANGLE_E_MAX - 0.1;
expected_e = angle_step;
expected_m = (p - 1) * MOTOR_ANGLE_M_MAX / p + expected_e / p;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_e_update(&angle, angle_step, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(p - 1, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
/* Update electrical angle with 2PI+0.1 in CCW direction in three steps */
angle_step = (MOTOR_ANGLE_E_MAX + 0.1);
expected_e = MOTOR_ANGLE_E_MAX - 0.1;
expected_m = (p - 2) * MOTOR_ANGLE_M_MAX / p + expected_e / p;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - M_PI_F, DIR_CCW);
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - 2 * M_PI_F, DIR_CCW);
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - 0.1, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(p - 2, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
}
/* Update electrical angle and overflow electrical angle in CW direction */
static void test_angle_el_update_cw_overflow(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
float a = 0.0;
int i = 0;
/* Initialize motor angle */
p = 8;
motor_angle_init(&angle, p);
/* Update electrical angle to achieve full mechanical rotation */
angle_step = 0.1;
expected_e = angle_step;
expected_m = angle_step / p;
s = sin(expected_e);
c = cos(expected_e);
/* Move angle in loop */
for (i = 0; i < p; i += 1)
{
for (a = 0.0; a <= MOTOR_ANGLE_E_MAX; a += angle_step)
{
motor_angle_e_update(&angle, a, DIR_CW);
}
}
/* Test poles counter before final step */
TEST_ASSERT_EQUAL_INT8(p - 1, angle.i);
/* One more step after overflow mechanical angle */
a = angle_step;
motor_angle_e_update(&angle, a, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
}
/* Update electrical angle and overflow electrical angle in CCW direction */
static void test_angle_el_update_ccw_overflow(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
float a = 0.0;
int i = 0;
/* Initialize motor angle */
p = 8;
motor_angle_init(&angle, p);
/* Update electrical angle to achieve full mechanical rotation */
angle_step = 0.1;
expected_e = MOTOR_ANGLE_E_MAX - angle_step;
expected_m = MOTOR_ANGLE_M_MAX - angle_step / p;
s = sin(expected_e);
c = cos(expected_e);
/* Move angle in loop */
for (i = 0; i < p; i += 1)
{
for (a = MOTOR_ANGLE_E_MAX; a >= 0.0; a -= angle_step)
{
motor_angle_e_update(&angle, a, DIR_CCW);
}
}
/* Test poles counter before final step */
TEST_ASSERT_EQUAL_INT8(0, angle.i);
/* One more step after overflow mechanical angle */
a = MOTOR_ANGLE_E_MAX - 0.1;
motor_angle_e_update(&angle, a, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(7, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
}
/* Update electric angle and change direction */
static void test_angle_el_change_dir(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
int i = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
float a = 0.0;
/* Initialize motor angle */
p = 7;
motor_angle_init(&angle, p);
/* Move electrical angle with 4*(2PI) + 0.1.
* It give us pole counter = 4
*/
angle_step = 0.1;
expected_m = 4 * MOTOR_ANGLE_M_MAX / p + angle_step / p;
expected_e = 0.1;
s = sin(expected_e);
c = cos(expected_e);
/* Move angle in loop */
for (i = 0; i < 4; i += 1)
{
for (a = 0.0; a <= MOTOR_ANGLE_E_MAX; a += angle_step)
{
motor_angle_e_update(&angle, a, DIR_CW);
}
}
/* Test poles counter before final step */
TEST_ASSERT_EQUAL_INT8(3, angle.i);
/* And rest 0.1 */
motor_angle_e_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(4, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
/* Now move angle backward 2*(2PI) + 0.1 */
angle_step = 0.1;
expected_m = 2 * MOTOR_ANGLE_M_MAX / p - angle_step / p;
expected_e = MOTOR_ANGLE_E_MAX - angle_step;
s = sin(expected_e);
c = cos(expected_e);
/* Move angle in loop */
for (i = 0; i < 2; i += 1)
{
for (a = angle_m; a >= 0.0; a -= angle_step)
{
motor_angle_e_update(&angle, a, DIR_CCW);
}
}
/* Test poles counter before final step */
TEST_ASSERT_EQUAL_INT8(2, angle.i);
/* And rest 0.1 */
motor_angle_e_update(&angle, MOTOR_ANGLE_E_MAX - angle_step, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(1, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
/* and again in forward direction 4*(2PI) + 0.1 */
angle_step = 0.1;
expected_m = 5 * MOTOR_ANGLE_M_MAX / p + angle_step / p;
expected_e = 0.1;
s = sin(expected_e);
c = cos(expected_e);
/* Move angle in loop */
for (i = 0; i < 4; i += 1)
{
for (a = angle_e; a <= MOTOR_ANGLE_E_MAX; a += angle_step)
{
motor_angle_e_update(&angle, a, DIR_CW);
}
}
/* Test poles counter before final step */
TEST_ASSERT_EQUAL_INT8(4, angle.i);
/* And rest 0.1 */
motor_angle_e_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(5, angle.i);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
}
/* Update mechanical angle in CW direction */
static void test_angle_m_update_cw(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 8;
motor_angle_init(&angle, p);
/* Update mechanical angle with 0.0 */
angle_step = 0.0;
expected_m = 0.0;
expected_e = 0.0;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_m_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
/* Update mechanical angle with 0.1 */
angle_step = 0.1;
expected_m = angle_step;
expected_e = angle_step * p - 0*MOTOR_ANGLE_E_MAX / p;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_m_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
/* Update mechanical angle to get one electrical angle rotation + 0.1 */
angle_step = MOTOR_ANGLE_M_MAX / p + 0.1;
expected_m = angle_step;
expected_e = angle_step * p - 1 * MOTOR_ANGLE_E_MAX;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_m_update(&angle, angle_step / 3, DIR_CW);
motor_angle_m_update(&angle, 2 * angle_step / 3, DIR_CW);
motor_angle_m_update(&angle, 3 * angle_step / 3, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(1, angle.i);
}
/* Update mechanical angle in CCW direction */
static void test_angle_m_update_ccw(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 8;
motor_angle_init(&angle, p);
/* Update mechanical angle with 1.0
* For 8 poles, one electrical angle rotationa takes ~0.785.
* So with angle step = 1.0 we have 1 electical angle rotation plus
* some rest.
*/
angle_step = 1.0;
expected_m = angle_step;
expected_e = angle_step * p - 1 * MOTOR_ANGLE_E_MAX;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_m_update(&angle, angle_step, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(1, angle.i);
/* Update mechanical angle to get one electrical angle rotation */
angle_step = angle_step - MOTOR_ANGLE_E_MAX / p;
expected_m = angle_step;
expected_e = angle_step * p;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_m_update(&angle, angle_step / 3, DIR_CCW);
motor_angle_m_update(&angle, 2 * angle_step / 3, DIR_CCW);
motor_angle_m_update(&angle, 3 * angle_step / 3, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
}
/* Update mechanical angle and overflow mechanical angle in CW direction */
static void test_angle_m_update_cw_overflow(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 3;
motor_angle_init(&angle, p);
/* Full mechanical angle rotation (2PI) + 0.1 in CW direction */
angle_step = 0.1;
expected_m = angle_step;
expected_e = 0 * MOTOR_ANGLE_E_MAX / p + angle_step * p;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_m_update(&angle, 0.0, DIR_CW);
motor_angle_m_update(&angle, MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, 1 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, 2 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, angle_step, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(0, angle.i);
}
/* Update mechanical angle and overflow mechanical angle in CCW direction */
static void test_angle_m_update_ccw_overflow(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 3;
motor_angle_init(&angle, p);
/* Full mechanical angle rotation (2PI) + 0.1 in CCW direction */
angle_step = MOTOR_ANGLE_M_MAX - 0.1;
expected_m = angle_step;
expected_e = MOTOR_ANGLE_E_MAX - 0.1 * p;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_m_update(&angle, 0.0, DIR_CCW);
motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW);
motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW);
motor_angle_m_update(&angle, 2 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW);
motor_angle_m_update(&angle, 1 * MOTOR_ANGLE_M_MAX / 4, DIR_CCW);
motor_angle_m_update(&angle, angle_step, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(p - 1, angle.i);
}
/* Update mechanical angle and change direction */
static void test_angle_m_change_dir(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float expected_i = 0.0;
float s = 0.0;
float c = 0.0;
/* Initialize motor angle */
p = 3;
motor_angle_init(&angle, p);
/* Move mechanical angle by 3*(2PI)/4 in CW direction */
angle_step = 3 * MOTOR_ANGLE_M_MAX / 4;
expected_m = angle_step;
expected_i = ((int)(angle_step * p / MOTOR_ANGLE_M_MAX));
expected_e = angle_step * p - expected_i * MOTOR_ANGLE_E_MAX;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_m_update(&angle, 0.0, DIR_CW);
motor_angle_m_update(&angle, 1 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, 2 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
/* Move mechanical angle by 1.0 in CCW direction */
angle_step = 3 * MOTOR_ANGLE_M_MAX / 4 - 2.0;
expected_m = angle_step;
expected_i = ((int)(angle_step * p / MOTOR_ANGLE_M_MAX));
expected_e = angle_step * p - expected_i * MOTOR_ANGLE_E_MAX;
s = sin(expected_e);
c = cos(expected_e);
motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4 - 1.0, DIR_CCW);
motor_angle_m_update(&angle, 3 * MOTOR_ANGLE_M_MAX / 4 - 2.0, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
}
/* Mix update mechanical angle and update electrical angle */
static void test_angle_m_el_mixed(void)
{
struct motor_angle_s angle;
uint8_t p = 0;
int i = 0;
float angle_step = 0.0;
float angle_m = 0.0;
float angle_e = 0.0;
float expected_e = 0.0;
float expected_m = 0.0;
float expected_i = 0.0;
float s = 0.0;
float c = 0.0;
float a = 0.0;
/* Initialize motor angle */
p = 27;
motor_angle_init(&angle, p);
/* Update mechanical angle to get 4 electrical angle
* rotations + 0.1 in CW direction
*/
angle_step = 4 * MOTOR_ANGLE_M_MAX / p + 0.1;
expected_m = angle_step;
expected_i = ((int)(angle_step * p / MOTOR_ANGLE_M_MAX));
expected_e = angle_step * p - expected_i * MOTOR_ANGLE_E_MAX;
s = sin(expected_e);
c = cos(expected_e);
/* Move in a few steps */
motor_angle_m_update(&angle, 0.0, DIR_CW);
motor_angle_m_update(&angle, MOTOR_ANGLE_M_MAX / p, DIR_CW);
motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / p, DIR_CW);
motor_angle_m_update(&angle, 4 * MOTOR_ANGLE_M_MAX / p + 0.1, DIR_CW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
/* Now move electrical angle by 2 full rotation in CCW direction.
* This should give us the same electrical angle and mechanical
* angle reduced by 2 electrical rotations.
*/
angle_step = 2 * MOTOR_ANGLE_E_MAX;
expected_i = expected_i - 2;
expected_e = expected_e;
expected_m = expected_m - 2 * MOTOR_ANGLE_M_MAX / p;
s = sin(expected_e);
c = cos(expected_e);
/* Move angle in loop */
for (i = 0; i < 2; i += 1)
{
for (a = expected_e ; a >= 0.0; a -= 0.1)
{
motor_angle_e_update(&angle, a, DIR_CCW);
}
}
/* Final step */
motor_angle_e_update(&angle, expected_e, DIR_CCW);
angle_m = motor_angle_m_get(&angle);
angle_e = motor_angle_e_get(&angle);
/* Test */
TEST_ASSERT_EQUAL_FLOAT(expected_e, angle_e);
TEST_ASSERT_EQUAL_FLOAT(expected_m, angle_m);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, s, angle.angle_el.sin);
TEST_ASSERT_FLOAT_WITHIN(TEST_SINCOS_DELTA, c, angle.angle_el.cos);
TEST_ASSERT_EQUAL_INT8(expected_i, angle.i);
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: test_motor
****************************************************************************/
void test_motor(void)
{
UNITY_BEGIN();
TEST_SEPARATOR();
/* Test some definitions */
TEST_ASSERT_EQUAL_FLOAT(1.0, DIR_CW);
TEST_ASSERT_EQUAL_FLOAT(-1.0, DIR_CCW);
/* Openloop control functions */
RUN_TEST(test_openloop_init);
RUN_TEST(test_openloop_one_step);
RUN_TEST(test_openloop_many_steps);
RUN_TEST(test_openloop_max_speed);
RUN_TEST(test_openloop_normalize_angle);
/* Motor angle */
RUN_TEST(test_angle_init);
RUN_TEST(test_angle_el_update_cw);
RUN_TEST(test_angle_el_update_ccw);
RUN_TEST(test_angle_el_update_cw_overflow);
RUN_TEST(test_angle_el_update_ccw_overflow);
RUN_TEST(test_angle_el_change_dir);
RUN_TEST(test_angle_m_update_cw);
RUN_TEST(test_angle_m_update_ccw);
RUN_TEST(test_angle_m_update_cw_overflow);
RUN_TEST(test_angle_m_update_ccw_overflow);
RUN_TEST(test_angle_m_change_dir);
RUN_TEST(test_angle_m_el_mixed);
UNITY_END();
}