nuttx/libc/math/lib_sqrtf.c

85 lines
2.2 KiB
C
Raw Normal View History

/****************************************************************************
* libc/math/lib_sqrtf.c
*
* This file is a part of NuttX:
*
* Copyright (C) 2012 Gregory Nutt. All rights reserved.
* Ported by: Darcy Gong
*
* It derives from the Rhombs OS math library by Nick Johnson which has
* a compatibile, MIT-style license:
*
* Copyright (C) 2009-2011 Nick Johnson <nickbjohnson4224 at gmail.com>
2014-04-13 22:32:20 +02:00
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
2014-04-13 22:32:20 +02:00
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/compiler.h>
#include <math.h>
#include <errno.h>
#include "libc.h"
/****************************************************************************
* Public Functions
****************************************************************************/
float sqrtf(float x)
{
float y;
/* Filter out invalid/trivial inputs */
if (x < 0.0)
{
set_errno(EDOM);
return NAN;
}
if (isnan(x))
{
return NAN;
}
if (isinf(x))
{
return INFINITY;
}
if (x == 0.0)
{
return 0.0;
}
/* Guess square root (using bit manipulation) */
y = lib_sqrtapprox(x);
/* Perform three iterations of approximation. This number (3) is
* definitely optimal
*/
y = 0.5 * (y + x / y);
y = 0.5 * (y + x / y);
y = 0.5 * (y + x / y);
return y;
}