nuttx/Documentation/platforms/risc-v/esp32h2/boards/esp32h2-devkit/index.rst

294 lines
8.7 KiB
ReStructuredText
Raw Normal View History

==================
ESP32-H2-DevKitM-1
==================
ESP32-H2-DevKitM-1 is an entry-level development board based on Bluetooth® Low Energy and
IEEE 802.15.4 combo module ESP32-H2-MINI-1 or ESP32-H2-MINI-1U. You can find the board schematic
`here <https://espressif-docs.readthedocs-hosted.com/projects/esp-dev-kits/en/latest/_static/esp32-h2-devkitm-1/esp32-h2-devkitm-1_v1.2_schematics_20230306.pdf>`_.
Most of the I/O pins on the ESP32-H2-MINI-1/1U module are broken out to the pin headers on
both sides of this board for easy interfacing. Developers can either connect peripherals with
jumper wires or mount ESP32-H2-DevKitM-1 on a breadboard.
.. figure:: esp32-h2-devkitm-1-isometric.png
:alt: ESP32-H2-DevKitM-1 Board Layout
:figclass: align-center
ESP32-H2-DevKitM-1 Board Layout
The block diagram below presents main components of the ESP32-H2-DevKitM-1.
.. figure:: ESP32-H2-DevKitM-1-v1.0-block-diagram.png
:alt: ESP32-H2-DevKitM-1 Electrical Block Diagram
:figclass: align-center
ESP32-H2-DevKitM-1 Electrical Block Diagram
Hardware Components
-------------------
.. figure:: esp32-h2-devkitm-1-v1.2-annotated-photo.png
:alt: ESP32-H2-DevKitM-1 Hardware Components
:figclass: align-center
ESP32-H2-DevKitM-1 Hardware Components
Buttons and LEDs
================
Board Buttons
--------------
There are two buttons labeled Boot and RST. The RST button is not available
to software. It pulls the chip enable line that doubles as a reset line.
The BOOT button is connected to IO9. On reset it is used as a strapping
pin to determine whether the chip boots normally or into the serial
bootloader. After reset, however, the BOOT button can be used for software
input.
Board LEDs
----------
There is one on-board LED that indicates the presence of power.
Another WS2812 LED is connected to GPIO8 and is available for software.
Current Measurement
===================
The J5 headers on ESP32-H2-DevKitM-1 can be used for measuring the current
drawn by the ESP32-H2-MINI-1/1U module:
- Remove the jumper: Power supply between the module and peripherals on the
board is cut off. To measure the module's current, connect the board with an
ammeter via J5 headers;
- Apply the jumper (factory default): Restore the board's normal functionality.
.. note::
When using 3V3 and GND pin headers to power the board, please remove the J5 jumper,
and connect an ammeter in series to the external circuit to measure the module's current.
Pin Mapping
===========
.. figure:: esp32-h2-devkitm-1-pin-layout.png
:alt: ESP32-H2-DevKitM-1 pin layout
:figclass: align-center
ESP32-H2-DevKitM-1 Pin Layout
Configurations
==============
All of the configurations presented below can be tested by running the following commands::
$ ./tools/configure.sh esp32h2-devkit:<config_name>
$ make flash ESPTOOL_PORT=/dev/ttyUSB0 -j
Where <config_name> is the name of board configuration you want to use, i.e.: nsh, buttons, wifi...
Then use a serial console terminal like ``picocom`` configured to 115200 8N1.
bmp180
------
This configuration enables the use of the BMP180 pressure sensor over I2C.
You can check that the sensor is working by using the ``bmp180`` application::
nsh> bmp180
Pressure value = 91531
Pressure value = 91526
Pressure value = 91525
coremark
--------
This configuration sets the CoreMark benchmark up for running on the maximum
number of cores for this system. It also enables some optimization flags and
disables the NuttShell to get the best possible score.
.. note:: As the NSH is disabled, the application will start as soon as the
system is turned on.
gpio
----
This is a test for the GPIO driver. It uses GPIO1 and GPIO2 as outputs and
GPIO9 as an interrupt pin.
At the nsh, we can turn the outputs on and off with the following::
nsh> gpio -o 1 /dev/gpio0
nsh> gpio -o 1 /dev/gpio1
nsh> gpio -o 0 /dev/gpio0
nsh> gpio -o 0 /dev/gpio1
We can use the interrupt pin to send a signal when the interrupt fires::
nsh> gpio -w 14 /dev/gpio2
The pin is configured as a rising edge interrupt, so after issuing the
above command, connect it to 3.3V.
i2c
---
This configuration can be used to scan and manipulate I2C devices.
You can scan for all I2C devices using the following command::
nsh> i2c dev 0x00 0x7f
2024-06-28 14:43:59 +02:00
mcuboot_nsh
--------------------
This configuration is the same as the ``nsh`` configuration, but it generates the application
image in a format that can be used by MCUboot. It also makes the ``make bootloader`` command to
build the MCUboot bootloader image using the Espressif HAL.
nsh
---
Basic configuration to run the NuttShell (nsh).
ostest
------
This is the NuttX test at ``apps/testing/ostest`` that is run against all new
architecture ports to assure a correct implementation of the OS.
pwm
---
This configuration demonstrates the use of PWM through a LED connected to GPIO8.
To test it, just execute the ``pwm`` application::
nsh> pwm
pwm_main: starting output with frequency: 10000 duty: 00008000
pwm_main: stopping output
rmt
---
This configuration configures the transmitter and the receiver of the
Remote Control Transceiver (RMT) peripheral on the ESP32-H2 using GPIOs 8
and 2, respectively. The RMT peripheral is better explained
`here <https://docs.espressif.com/projects/esp-idf/en/latest/esp32h2/api-reference/peripherals/rmt.html>`__,
in the ESP-IDF documentation. The minimal data unit in the frame is called the
RMT symbol, which is represented by ``rmt_item32_t`` in the driver:
.. figure:: rmt_symbol.png
:align: center
The example ``rmtchar`` can be used to test the RMT peripheral. Connecting
these pins externally to each other will make the transmitter send RMT items
and demonstrates the usage of the RMT peripheral::
nsh> rmtchar
**WS2812 addressable RGB LEDs**
This same configuration enables the usage of the RMT peripheral and the example
``ws2812`` to drive addressable RGB LEDs::
nsh> ws2812
Please note that this board contains an on-board WS2812 LED connected to GPIO8
and, by default, this config configures the RMT transmitter in the same pin.
rtc
---
This configuration demonstrates the use of the RTC driver through alarms.
You can set an alarm, check its progress and receive a notification after it expires::
nsh> alarm 10
alarm_daemon started
alarm_daemon: Running
Opening /dev/rtc0
Alarm 0 set in 10 seconds
nsh> alarm -r
Opening /dev/rtc0
Alarm 0 is active with 10 seconds to expiration
nsh> alarm_daemon: alarm 0 received
spi
--------
This configuration enables the support for the SPI driver.
You can test it by connecting MOSI and MISO pins which are GPIO5 and GPIO0
by default to each other and running the ``spi`` example::
nsh> spi exch -b 2 "AB"
Sending: AB
Received: AB
spiflash
--------
This config tests the external SPI that comes with the ESP32-H2 module connected
through SPI1.
By default a SmartFS file system is selected.
Once booted you can use the following commands to mount the file system::
nsh> mksmartfs /dev/smart0
nsh> mount -t smartfs /dev/smart0 /mnt
timer
-----
This config test the general use purpose timers. It includes the 4 timers,
adds driver support, registers the timers as devices and includes the timer
example.
To test it, just run the following::
nsh> timer -d /dev/timerx
Where x in the timer instance.
twai
----
This configuration enables the support for the TWAI (Two-Wire Automotive Interface) driver.
You can test it by connecting TWAI RX and TWAI TX pins which are GPIO0 and GPIO2 by default
to an external transceiver or connecting TWAI RX to TWAI TX pin by enabling
the `CONFIG_CAN_LOOPBACK` option (``Device Drivers -> CAN Driver Support -> CAN loopback mode``)
and running the ``can`` example::
nsh> can
nmsgs: 0
min ID: 1 max ID: 2047
Bit timing:
Baud: 1000000
TSEG1: 15
TSEG2: 4
SJW: 3
ID: 1 DLC: 1
usbconsole
----------
This configuration tests the built-in USB-to-serial converter found in ESP32-H2.
``esptool`` can be used to check the version of the chip and if this feature is
supported. Running ``esptool.py -p <port> chip_id`` should have ``Chip is
ESP32-H2`` in its output.
When connecting the board a new device should appear, a ``/dev/ttyACMX`` on Linux
or a ``/dev/cu.usbmodemXXX`` om macOS.
This can be used to flash and monitor the device with the usual commands::
make download ESPTOOL_PORT=/dev/ttyACM0
minicom -D /dev/ttyACM0
watchdog
--------
This configuration tests the watchdog timers. It includes the 1 MWDTS,
adds driver support, registers the WDTs as devices and includes the watchdog
example application.
To test it, just run the following command::
nsh> wdog -i /dev/watchdogX
Where X is the watchdog instance.